Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Task-agnostic Distillation of Encoder-Decoder Language Models (2305.12330v1)

Published 21 May 2023 in cs.CL

Abstract: Finetuning pretrained LLMs (LMs) have enabled appealing performance on a diverse array of tasks. The intriguing task-agnostic property has driven a shifted focus from task-specific to task-agnostic distillation of LMs. While task-agnostic, compute-efficient, performance-preserved LMs can be yielded by task-agnostic distillation, previous studies mainly sit in distillation of either encoder-only LMs (e.g., BERT) or decoder-only ones (e.g., GPT) yet largely neglect that distillation of encoder-decoder LMs (e.g., T5) can posit very distinguished behaviors. Frustratingly, we discover that existing task-agnostic distillation methods can fail to handle the distillation of encoder-decoder LMs. To the demand, we explore a few paths and uncover a path named as MiniEnD that successfully tackles the distillation of encoder-decoder LMs in a task-agnostic fashion. We examine MiniEnD on language understanding and abstractive summarization. The results showcase that MiniEnD is generally effective and is competitive compared to other alternatives. We further scale MiniEnD up to distillation of 3B encoder-decoder LLMs with interpolated distillation. The results imply the opportunities and challenges in distilling LLMs (e.g., LLaMA).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chen Zhang (403 papers)
  2. Yang Yang (883 papers)
  3. Jingang Wang (71 papers)
  4. Dawei Song (62 papers)
Citations (3)