Disjunctive Branch-And-Bound for Certifiably Optimal Low-Rank Matrix Completion (2305.12292v3)
Abstract: Low-rank matrix completion consists of computing a matrix of minimal complexity that recovers a given set of observations as accurately as possible. Unfortunately, existing methods for matrix completion are heuristics that, while highly scalable and often identifying high-quality solutions, do not possess any optimality guarantees. We reexamine matrix completion with an optimality-oriented eye. We reformulate low-rank matrix completion problems as convex problems over the non-convex set of projection matrices and implement a disjunctive branch-and-bound scheme that solves them to certifiable optimality. Further, we derive a novel and often near-exact class of convex relaxations by decomposing a low-rank matrix as a sum of rank-one matrices and incentivizing that two-by-two minors in each rank-one matrix have determinant zero. In numerical experiments, our new convex relaxations decrease the optimality gap by two orders of magnitude compared to existing attempts, and our disjunctive branch-and-bound scheme solves $n \times m$ rank-$r$ matrix completion problems to certifiable optimality or near optimality in hours for $\max {m, n} \leq 2500$ and $r \leq 5$. Moreover, this improvement in the training error translates into an average $2\%$--$50\%$ improvement in the test set error.