Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training (2305.12201v2)

Published 20 May 2023 in cs.LG

Abstract: Distributed data-parallel (DDP) training improves overall application throughput as multiple devices train on a subset of data and aggregate updates to produce a globally shared model. The periodic synchronization at each iteration incurs considerable overhead, exacerbated by the increasing size and complexity of state-of-the-art neural networks. Although many gradient compression techniques propose to reduce communication cost, the ideal compression factor that leads to maximum speedup or minimum data exchange remains an open-ended problem since it varies with the quality of compression, model size and structure, hardware, network topology and bandwidth. We propose GraVAC, a framework to dynamically adjust compression factor throughout training by evaluating model progress and assessing gradient information loss associated with compression. GraVAC works in an online, black-box manner without any prior assumptions about a model or its hyperparameters, while achieving the same or better accuracy than dense SGD (i.e., no compression) in the same number of iterations/epochs. As opposed to using a static compression factor, GraVAC reduces end-to-end training time for ResNet101, VGG16 and LSTM by 4.32x, 1.95x and 6.67x respectively. Compared to other adaptive schemes, our framework provides 1.94x to 5.63x overall speedup.

Citations (3)

Summary

We haven't generated a summary for this paper yet.