Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization (2305.12123v1)

Published 20 May 2023 in cs.CL

Abstract: Models trained with empirical risk minimization (ERM) are revealed to easily rely on spurious correlations, resulting in poor generalization. Group distributionally robust optimization (group DRO) can alleviate this problem by minimizing the worst-case loss over pre-defined groups. While promising, in practice factors like expensive annotations and privacy preclude the availability of group labels. More crucially, when taking a closer look at the failure modes of out-of-distribution generalization, the typical procedure of reweighting in group DRO loses efficiency. Hinged on the limitations, in this work, we reformulate the group DRO framework by proposing Q-Diversity. Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization. Furthermore, a novel mixing strategy across groups is presented to diversify the under-represented groups. In a series of experiments on both synthetic and real-world text classification tasks, results demonstrate that Q-Diversity can consistently improve worst-case accuracy under different distributional shifts, outperforming state-of-the-art alternatives.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ting Wu (31 papers)
  2. Rui Zheng (79 papers)
  3. Tao Gui (127 papers)
  4. Qi Zhang (785 papers)
  5. Xuanjing Huang (287 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.