Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing high-dimensional optimal transport by flow neural networks (2305.11857v4)

Published 19 May 2023 in stat.ML, cs.LG, and stat.ME

Abstract: Flow-based models are widely used in generative tasks, including normalizing flow, where a neural network transports from a data distribution $P$ to a normal distribution. This work develops a flow-based model that transports from $P$ to an arbitrary $Q$ where both distributions are only accessible via finite samples. We propose to learn the dynamic optimal transport between $P$ and $Q$ by training a flow neural network. The model is trained to optimally find an invertible transport map between $P$ and $Q$ by minimizing the transport cost. The trained optimal transport flow subsequently allows for performing many downstream tasks, including infinitesimal density ratio estimation (DRE) and distribution interpolation in the latent space for generative models. The effectiveness of the proposed model on high-dimensional data is demonstrated by strong empirical performance on high-dimensional DRE, OT baselines, and image-to-image translation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.