Security of differential phase shift QKD against explicit individual attacks (2305.11822v2)
Abstract: Quantum key distribution (QKD) is known to be unconditionally secure in principle, but quantifying the security of QKD protocols from a practical standpoint continues to remain an important challenge. Here, we focus on phase-based QKD protocols and characterize the security of the 3 and n-pulse Differential Phase Shift Quantum Key Distribution (DPS QKD) protocols against individual attacks. In particular, we focus on the minimum error discrimination (MED) and cloning attacks and obtain the corresponding shrinking factor by which the sifted key needs to be shrunk in order to get a secure key. We compare the secure key rates thus obtained with the known lower bounds under a general individual attack. In a departure from the theoretical lower bounds, which have no explicit attack strategies, our work provides a practical assessment of the security of phase-based protocols based on attacks with known implementations.
- C. H. Bennett and G. Brassard, Theoretical Computer Science 560, 7 (2014).
- A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
- M. Curty and N. Lütkenhaus, Phys. Rev. A 71, 062301 (2005).
- N. Lütkenhaus and M. Jahma, New Journal of Physics 4, 44 (2002).
- P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).
- R. Renner, International Journal of Quantum Information 06, 1 (2008), https://doi.org/10.1142/S0219749908003256 .
- C. Portmann and R. Renner, Rev. Mod. Phys. 94, 025008 (2022).
- V. Scarani and R. Renner, Phys. Rev. Lett. 100, 200501 (2008).
- M. Hayashi, Phys. Rev. A 76, 012329 (2007).
- L. Sheridan, T. P. Le, and V. Scarani, New Journal of Physics 12, 123019 (2010).
- R. Y. Q. Cai and V. Scarani, New Journal of Physics 11, 045024 (2009).
- K. Inoue, E. Waks, and Y. Yamamoto, Phys. Rev. Lett. 89, 037902 (2002).
- K. Inoue, IEEE Journal of Selected Topics in Quantum Electronics 21, 109 (2015).
- T. Sasaki, Y. Yamamoto, and M. Koashi, Nature 509, 475 (2014).
- S. K. Ranu, A. Prabhakar, and P. Mandayam, Quantum Information Processing 20, 67 (2021).
- E. Waks, H. Takesue, and Y. Yamamoto, Phys. Rev. A 73, 012344 (2006).
- K. Wen, K. Tamaki, and Y. Yamamoto, Phys. Rev. Lett. 103, 170503 (2009).
- C. Branciard, N. Gisin, and V. Scarani, New Journal of Physics 10, 013031 (2008).
- A. Mizutani, Y. Takeuchi, and K. Tamaki, Phys. Rev. Res. 5, 023132 (2023).
- A. Chefles, Physics Letters A 239, 339 (1998).
- C. W. Helstrom, Journal of Statistical Physics 1, 231 (1969).
- Y. Okubo, F. Buscemi, and A. Tomita, AIP Conference Proceedings 1110, 355 (2009).
- J. Watrous, Similarity and distance among states and channels, in The Theory of Quantum Information (Cambridge University Press, 2018) p. 124–200.
- M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, https://cvxr.com/cvx (2014).
- M. Grant and S. Boyd, Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences (Springer-Verlag Limited, 2008) pp. 95–110.
- W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).
- J. Watrous, The Theory of Quantum Information, 1st ed. (Cambridge University Press, 2018) Chap. 1.
- V. Bužek and M. Hillery, Phys. Rev. Lett. 81, 5003 (1998).
- A. Mitra and P. Mandayam, Journal of Physics A: Mathematical and Theoretical 54, 405303 (2021).
- U. L. Andersen, V. Josse, and G. Leuchs, Phys. Rev. Lett. 94, 240503 (2005).
- D. Dieks, Physics Letters A 126, 303 (1988).