Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Surgical-VQLA: Transformer with Gated Vision-Language Embedding for Visual Question Localized-Answering in Robotic Surgery (2305.11692v1)

Published 19 May 2023 in cs.CV, cs.AI, cs.CL, cs.LG, and cs.RO

Abstract: Despite the availability of computer-aided simulators and recorded videos of surgical procedures, junior residents still heavily rely on experts to answer their queries. However, expert surgeons are often overloaded with clinical and academic workloads and limit their time in answering. For this purpose, we develop a surgical question-answering system to facilitate robot-assisted surgical scene and activity understanding from recorded videos. Most of the existing VQA methods require an object detector and regions based feature extractor to extract visual features and fuse them with the embedded text of the question for answer generation. However, (1) surgical object detection model is scarce due to smaller datasets and lack of bounding box annotation; (2) current fusion strategy of heterogeneous modalities like text and image is naive; (3) the localized answering is missing, which is crucial in complex surgical scenarios. In this paper, we propose Visual Question Localized-Answering in Robotic Surgery (Surgical-VQLA) to localize the specific surgical area during the answer prediction. To deal with the fusion of the heterogeneous modalities, we design gated vision-language embedding (GVLE) to build input patches for the Language Vision Transformer (LViT) to predict the answer. To get localization, we add the detection head in parallel with the prediction head of the LViT. We also integrate GIoU loss to boost localization performance by preserving the accuracy of the question-answering model. We annotate two datasets of VQLA by utilizing publicly available surgical videos from MICCAI challenges EndoVis-17 and 18. Our validation results suggest that Surgical-VQLA can better understand the surgical scene and localize the specific area related to the question-answering. GVLE presents an efficient language-vision embedding technique by showing superior performance over the existing benchmarks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Long Bai (87 papers)
  2. Mobarakol Islam (65 papers)
  3. Lalithkumar Seenivasan (18 papers)
  4. Hongliang Ren (98 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.