Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concrete Quantum Channels and Algebraic Structure of Abstract Quantum Channels (2305.11471v3)

Published 19 May 2023 in quant-ph, cs.IT, and math.IT

Abstract: This article analyzes the algebraic structure of the set of all quantum channels and its subset consisting of quantum channels that have Holevo representation. The regularity of these semigroups under composition of mappings is analyzed. It is also known that these sets are compact convex sets and, therefore, rich in geometry. An attempt is made to identify generalized invertible channels and also the idempotent channels. When channels are of the Holevo type, these two problems are fully studied in this article. The motivation behind this study is its applicability to the reversibility of channel transformations and recent developments in resource-destroying channels, which are idempotents. This is related to the coding-encoding problem in quantum information theory. Several examples are provided, with the main examples coming from pre-conditioner maps which assign preconditioners to matrices in numerical linear algebra. Thus, the known pre-conditioner maps are viewed as quantum channels in finite dimensions. In addition, the infinite-dimensional analogue of preconditioners is introduced and certain limit theorems are discussed; this is with an aim to analyze asymptotic methods in quantum channels analogous to problems in asymptotic linear algebra.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. S. Serra Capizzano, “Korovkin theorems and linear positive Gram matrix algebra approximations of Toeplitz matrices,”  (1998) pp. 307–334, iLAS Symposium on Fast Algorithms for Control, Signals and Image Processing (Winnipeg, MB, 1997).
  2. J. Ahiable, D. W. Kribs, J. Levick, R. Pereira,  and M. Rahaman, “Entanglement breaking channels, stochastic matrices, and primitivity,” Linear Algebra Appl. 629, 219–231 (2021).
  3. M. D. Choi, “Completely positive linear maps on complex matrices,” Linear Algebra Appl. 10, 285–290 (1975).
  4. Z.-W. Liu, X. Hu,  and S. Lloyd, “Resource destroying maps,” Phys. Rev. Lett. 118, 060502 (2017).
  5. K. Korzekwa, Z. Puchał a, M. Tomamichel,  and K. Życzkowski, “Encoding classical information into quantum resources,” IEEE Trans. Inform. Theory 68, 4518–4530 (2022).
  6. D. W. Kribs, J. Levick, K. Olfert, R. Pereira,  and M. Rahaman, “Nullspaces of entanglement breaking channels and applications,” J. Phys. A 54, Paper No. 105303, 16 (2021).
  7. M. Horodecki, P. W. Shor,  and M. B. Ruskai, “Entanglement breaking channels,” Rev. Math. Phys. 15, 629–641 (2003).
  8. J. L. Doob, “Topics in the theory of Markoff chains,” Trans. Amer. Math. Soc. 52, 37–64 (1942).
  9. J. R. Wall, “Generalized inverses of stochastic matrices,” Linear Algebra Appl. 10, 147–154 (1975).
  10. V. Sharma and K. G. Shenoy, “Quantum information theory in infinite dimensions with application to optical channels,” J. Indian Inst. Sci. A Multidisciplinary Reviews Journal ISSN: 0970-4140 Coden-JIISAD , 1–20 (2022).
  11. A. S. Kholevo and M. E. Shirokov, “Mutual and coherent information for infinite-dimensional quantum channels,” Problemy Peredachi Informatsii 46, 3–21 (2010).
  12. S. Friedland, “Infnite dimensional generalizations of choi’s theorem,” DE GRUYTER , 67–77 (2019).
  13. A. S. Holevo, “Coding theorems for quantum channels,” Russian Math. Surveys 53, 1295–1331 (1998).
  14. M. N. Namboodiri, “A concrete quantum channel,” Georgian Mathematical Union XI Annual International Conference  (23-28 August 2021,).
  15. K. L.Olfert, “Entanglement breaking channel in quantum information,” Georgian Mathematical Union XI Annual International Conference  (23-28 August 2021,).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com