Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
476 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Diffusion-Based Mel-Spectrogram Enhancement for Personalized Speech Synthesis with Found Data (2305.10891v3)

Published 18 May 2023 in eess.AS

Abstract: Creating synthetic voices with found data is challenging, as real-world recordings often contain various types of audio degradation. One way to address this problem is to pre-enhance the speech with an enhancement model and then use the enhanced data for text-to-speech (TTS) model training. This paper investigates the use of conditional diffusion models for generalized speech enhancement, which aims at addressing multiple types of audio degradation simultaneously. The enhancement is performed on the log Mel-spectrogram domain to align with the TTS training objective. Text information is introduced as an additional condition to improve the model robustness. Experiments on real-world recordings demonstrate that the synthetic voice built on data enhanced by the proposed model produces higher-quality synthetic speech, compared to those trained on data enhanced by strong baselines. Code and pre-trained parameters of the proposed enhancement model are available at \url{https://github.com/dmse4tts/DMSE4TTS}

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.