Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LeTI: Learning to Generate from Textual Interactions (2305.10314v2)

Published 17 May 2023 in cs.CL, cs.AI, and cs.SE

Abstract: Fine-tuning pre-trained LLMs (LMs) is essential for enhancing their capabilities. Existing techniques commonly fine-tune on input-output pairs (e.g., instruction tuning) or with numerical rewards that gauge the output quality (e.g., RLHF). We explore LMs' potential to learn from textual interactions (LETI) that not only check their correctness with binary labels but also pinpoint and explain errors in their outputs through textual feedback. Our focus is the code generation task, where the model produces code based on natural language instructions. This setting invites a natural and scalable way to acquire textual feedback: the error messages and stack traces from code execution using a Python interpreter. LETI iteratively fine-tunes the model, using the LM objective, on a concatenation of natural language instructions, LM-generated programs, and textual feedback. Prepended to this fine-tuning text, a binary reward token is used to differentiate correct and buggy solutions. LETI requires no ground-truth outputs for training and even outperforms a fine-tuned baseline that does. LETI not only improves the performance of LMs on a code generation dataset MBPP, but also generalizes to other datasets. Trained on MBPP, it achieves comparable or better performance than the base LMs on unseen problems in HumanEval. Furthermore, compared to binary feedback, we observe that textual feedback leads to improved generation quality and sample efficiency, achieving the same performance with fewer than half of the gradient steps. LETI is equally applicable in natural language tasks when they can be formulated as code generation, which we empirically verified on event argument extraction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xingyao Wang (29 papers)
  2. Hao Peng (291 papers)
  3. Reyhaneh Jabbarvand (10 papers)
  4. Heng Ji (266 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com