Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
12 tokens/sec
GPT-4o
92 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
480 tokens/sec
Kimi K2 via Groq Premium
195 tokens/sec
2000 character limit reached

Quantum neural networks form Gaussian processes (2305.09957v3)

Published 17 May 2023 in quant-ph, cs.LG, and stat.ML

Abstract: It is well known that artificial neural networks initialized from independent and identically distributed priors converge to Gaussian processes in the limit of a large number of neurons per hidden layer. In this work we prove an analogous result for Quantum Neural Networks (QNNs). Namely, we show that the outputs of certain models based on Haar random unitary or orthogonal deep QNNs converge to Gaussian processes in the limit of large Hilbert space dimension $d$. The derivation of this result is more nuanced than in the classical case due to the role played by the input states, the measurement observable, and the fact that the entries of unitary matrices are not independent. Then, we show that the efficiency of predicting measurements at the output of a QNN using Gaussian process regression depends on the observable's bodyness. Furthermore, our theorems imply that the concentration of measure phenomenon in Haar random QNNs is worse than previously thought, as we prove that expectation values and gradients concentrate as $\mathcal{O}\left(\frac{1}{ed \sqrt{d}}\right)$. Finally, we discuss how our results improve our understanding of concentration in $t$-designs.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets