Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mean Estimation Under Heterogeneous Privacy: Some Privacy Can Be Free (2305.09668v1)

Published 27 Apr 2023 in cs.CR, cs.DS, cs.LG, and stat.ML

Abstract: Differential Privacy (DP) is a well-established framework to quantify privacy loss incurred by any algorithm. Traditional DP formulations impose a uniform privacy requirement for all users, which is often inconsistent with real-world scenarios in which users dictate their privacy preferences individually. This work considers the problem of mean estimation under heterogeneous DP constraints, where each user can impose their own distinct privacy level. The algorithm we propose is shown to be minimax optimal when there are two groups of users with distinct privacy levels. Our results elicit an interesting saturation phenomenon that occurs as one group's privacy level is relaxed, while the other group's privacy level remains constant. Namely, after a certain point, further relaxing the privacy requirement of the former group does not improve the performance of the minimax optimal mean estimator. Thus, the central server can offer a certain degree of privacy without any sacrifice in performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.