Maximum-Width Rainbow-Bisecting Empty Annulus (2305.09248v2)
Abstract: Given a set of $n$ colored points with $k$ colors in the plane, we study the problem of computing a maximum-width rainbow-bisecting empty annulus (of objects specifically axis-parallel square, axis-parallel rectangle and circle) problem. We call a region rainbow if it contains at least one point of each color. The maximum-width rainbow-bisecting empty annulus problem asks to find an annulus $A$ of a particular shape with maximum possible width such that $A$ does not contain any input points and it bisects the input point set into two parts, each of which is a rainbow. We compute a maximum-width rainbow-bisecting empty axis-parallel square, axis-parallel rectangular and circular annulus in $O(n3)$ time using $O(n)$ space, in $O(k2n2\log n)$ time using $O(n\log n)$ space and in $O(n3)$ time using $O(n2)$ space respectively.
- The farthest color Voronoi diagram and related problems. In Proc. 17th EuroCG 2001, pages 113–116, 2001.
- Smallest color-spanning objects. In Algorithms - ESA 2001, 9th Annual European Symposium, Aarhus, Denmark, August 28-31, 2001, Proceedings, pages 278–289, 2001.
- Minimum width color spanning annulus. Theor. Comput. Sci., 725:16–30, 2018.
- Topological sweeping in three dimensions. In Proceedings of the International Symposium on Algorithms, SIGAL, volume 450 of Lecture Notes in Computer Science, pages 310–317, 1990.
- Selecting and covering colored points. Discrete Applied Mathematics., 250:75–86, 2020.
- Maximum-width empty square and rectangular annulus. Computational Geometry: Theory and Applications, 96:101747, 2021.
- Color spanning objects: Algorithms and hardness results. Discrete Applied Mathematics., 280:14–22, 2020.
- Siu-Wing Cheng. Widest empty L-shaped corridor. Inform. Proc. Lett., 58(6):277 – 283, 1996.
- Smallest color-spanning object revisited. Int. J. Comput. Geometry Appl., 19(5):457–478, 2009.
- Computational Geometry: Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd edition, 2008.
- On finding a widest empty 1-corner corridor. Inform. Proc. Lett., 98(5):199 – 205, 2006.
- The largest empty annulus problem. Int. J. Comput. Geom. Appl., 13(4):317–325, 2003.
- Locating an obnoxious plane. Eur. J. Oper. Res., 173(2):556–564, 2006.
- Topologically sweeping an arrangement. J. Comput. Syst. Sci., 38(1):165–194, 1989.
- Computing the smallest color-spanning equilateral triangle. In Proc. 31st EuroCG 2015, pages 32–35, 2015.
- M. Houle and A. Maciel. Finding the widest empty corridor through a set of points. In G.T. Toussaint ed. Snapshots of Computational and Discrete Geometry (SOCS), pages 210–213, 1988.
- Computing the smallest color-spanning axis-parallel square. In Algorithms and Computation - 24th International Symposium, ISAAC 2013, Proceedings, pages 634–643, 2013.
- Minimum-width rectangular annulus. Theoret. Comput. Sci., 508:74–80, 2013.