Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Easy-to-Hard Learning for Information Extraction (2305.09193v2)

Published 16 May 2023 in cs.CL

Abstract: Information extraction (IE) systems aim to automatically extract structured information, such as named entities, relations between entities, and events, from unstructured texts. While most existing work addresses a particular IE task, universally modeling various IE tasks with one model has achieved great success recently. Despite their success, they employ a one-stage learning strategy, i.e., directly learning to extract the target structure given the input text, which contradicts the human learning process. In this paper, we propose a unified easy-to-hard learning framework consisting of three stages, i.e., the easy stage, the hard stage, and the main stage, for IE by mimicking the human learning process. By breaking down the learning process into multiple stages, our framework facilitates the model to acquire general IE task knowledge and improve its generalization ability. Extensive experiments across four IE tasks demonstrate the effectiveness of our framework. We achieve new state-of-the-art results on 13 out of 17 datasets. Our code is available at \url{https://github.com/DAMO-NLP-SG/IE-E2H}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chang Gao (54 papers)
  2. Wenxuan Zhang (75 papers)
  3. Wai Lam (117 papers)
  4. Lidong Bing (144 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.