Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Double-Iterative Gaussian Process Regression for Modeling Error Compensation in Autonomous Racing (2305.07740v2)

Published 12 May 2023 in cs.RO, cs.SY, and eess.SY

Abstract: Autonomous racing control is a challenging research problem as vehicles are pushed to their limits of handling to achieve an optimal lap time; therefore, vehicles exhibit highly nonlinear and complex dynamics. Difficult-to-model effects, such as drifting, aerodynamics, chassis weight transfer, and suspension can lead to infeasible and suboptimal trajectories. While offline planning allows optimizing a full reference trajectory for the minimum lap time objective, such modeling discrepancies are particularly detrimental when using offline planning, as planning model errors compound with controller modeling errors. Gaussian Process Regression (GPR) can compensate for modeling errors. However, previous works primarily focus on modeling error in real-time control without consideration for how the model used in offline planning can affect the overall performance. In this work, we propose a double-GPR error compensation algorithm to reduce model uncertainties; specifically, we compensate both the planner's model and controller's model with two respective GPR-based error compensation functions. Furthermore, we design an iterative framework to re-collect error-rich data using the racing control system. We test our method in the high-fidelity racing simulator Gran Turismo Sport (GTS); we find that our iterative, double-GPR compensation functions improve racing performance and iteration stability in comparison to a single compensation function applied merely for real-time control.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi, and R. Mangharam, “Autonomous vehicles on the edge: A survey on autonomous vehicle racing,” IEEE Open Journal of Intelligent Transportation Systems, 2022.
  2. P. R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T. J. Walsh, R. Capobianco, A. Devlic, F. Eckert, F. Fuchs et al., “Outracing champion gran turismo drivers with deep reinforcement learning,” Nature, vol. 602, no. 7896, pp. 223–228, 2022.
  3. C. Hao, C. Tang, E. Bergkvist, C. Weaver, L. Sun, W. Zhan, and M. Tomizuka, “Outracing human racers with model-based autonomous racing,” arXiv preprint arXiv:2211.09378, 2022.
  4. L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious nmpc with gaussian process dynamics for autonomous miniature race cars,” in 2018 European Control Conference (ECC).   IEEE, 2018, pp. 1341–1348.
  5. J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-based model predictive control for autonomous racing,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3363–3370, 2019.
  6. SIE Inc., “Gran turismo sport,” 2017. [Online]. Available: https://www.gran-turismo.com/us/gtsport/top/
  7. D. Kappler, F. Meier, N. Ratliff, and S. Schaal, “A new data source for inverse dynamics learning,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 4723–4730.
  8. E. Li, H. Feng, H. Zhou, X. Li, Y. Zhai, S. Zhang, and Y. Fu, “Model learning for two-wheeled robot self-balance control,” in 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO).   IEEE, 2019, pp. 1582–1587.
  9. D. Rastogi, I. Koryakovskiy, and J. Kober, “Sample-efficient reinforcement learning via difference models,” in Machine Learning in Planning and Control of Robot Motion Workshop at ICRA, 2018.
  10. S. Ha and K. Yamane, “Reducing hardware experiments for model learning and policy optimization,” in 2015 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2015, pp. 2620–2626.
  11. G. S. Lima, S. Trimpe, and W. M. Bessa, “Sliding mode control with gaussian process regression for underwater robots,” Journal of Intelligent & Robotic Systems, vol. 99, no. 3, pp. 487–498, 2020.
  12. W. Jing, P. Y. Tao, G. Yang, and K. Shimada, “Calibration of industry robots with consideration of loading effects using product-of-exponential (poe) and gaussian process (gp),” in 2016 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2016, pp. 4380–4385.
  13. G. Fang, X. Wang, K. Wang, K.-H. Lee, J. D. Ho, H.-C. Fu, D. K. C. Fu, and K.-W. Kwok, “Vision-based online learning kinematic control for soft robots using local gaussian process regression,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1194–1201, 2019.
  14. A. Wan, J. Xu, H. Chen, S. Zhang, and K. Chen, “Optimal path planning and control of assembly robots for hard-measuring easy-deformation assemblies,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 4, pp. 1600–1609, 2017.
  15. M. Titsias, “Variational learning of inducing variables in sparse gaussian processes,” in Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, D. van Dyk and M. Welling, Eds., vol. 5.   Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA: PMLR, 16–18 Apr 2009, pp. 567–574. [Online]. Available: https://proceedings.mlr.press/v5/titsias09a.html
  16. A. Jain, M. O’Kelly, P. Chaudhari, and M. Morari, “Bayesrace: Learning to race autonomously using prior experience,” arXiv preprint arXiv:2005.04755, 2020.
  17. A. Wischnewski, J. Betz, and B. Lohmann, “A model-free algorithm to safely approach the handling limit of an autonomous racecar,” in 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE).   IEEE, 2019, pp. 1–6.
  18. J. Wang, “An intuitive tutorial to gaussian processes regression,” arXiv preprint arXiv:2009.10862, 2020.
  19. N. R. Kapania, J. Subosits, and J. Christian Gerdes, “A sequential two-step algorithm for fast generation of vehicle racing trajectories,” Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 9, 2016.
  20. S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.
  21. A. Domahidi, E. Chu, and S. Boyd, “Ecos: An socp solver for embedded systems,” in 2013 European Control Conference (ECC).   IEEE, 2013, pp. 3071–3076.
  22. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
  23. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.
  24. J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson, “Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration,” Advances in neural information processing systems, vol. 31, 2018.
Citations (4)

Summary

We haven't generated a summary for this paper yet.