Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Search of Comprehensively Robust Neural Architectures via Multi-fidelity Evaluation (2305.07308v1)

Published 12 May 2023 in cs.CV

Abstract: Neural architecture search (NAS) has emerged as one successful technique to find robust deep neural network (DNN) architectures. However, most existing robustness evaluations in NAS only consider $l_{\infty}$ norm-based adversarial noises. In order to improve the robustness of DNN models against multiple types of noises, it is necessary to consider a comprehensive evaluation in NAS for robust architectures. But with the increasing number of types of robustness evaluations, it also becomes more time-consuming to find comprehensively robust architectures. To alleviate this problem, we propose a novel efficient search of comprehensively robust neural architectures via multi-fidelity evaluation (ES-CRNA-ME). Specifically, we first search for comprehensively robust architectures under multiple types of evaluations using the weight-sharing-based NAS method, including different $l_{p}$ norm attacks, semantic adversarial attacks, and composite adversarial attacks. In addition, we reduce the number of robustness evaluations by the correlation analysis, which can incorporate similar evaluations and decrease the evaluation cost. Finally, we propose a multi-fidelity online surrogate during optimization to further decrease the search cost. On the basis of the surrogate constructed by low-fidelity data, the online high-fidelity data is utilized to finetune the surrogate. Experiments on CIFAR10 and CIFAR100 datasets show the effectiveness of our proposed method.

Citations (5)

Summary

We haven't generated a summary for this paper yet.