Harvesting Event Schemas from Large Language Models (2305.07280v1)
Abstract: Event schema provides a conceptual, structural and formal language to represent events and model the world event knowledge. Unfortunately, it is challenging to automatically induce high-quality and high-coverage event schemas due to the open nature of real-world events, the diversity of event expressions, and the sparsity of event knowledge. In this paper, we propose a new paradigm for event schema induction -- knowledge harvesting from large-scale pre-trained LLMs, which can effectively resolve the above challenges by discovering, conceptualizing and structuralizing event schemas from PLMs. And an Event Schema Harvester (ESHer) is designed to automatically induce high-quality event schemas via in-context generation-based conceptualization, confidence-aware schema structuralization and graph-based schema aggregation. Empirical results show that ESHer can induce high-quality and high-coverage event schemas on varying domains.