Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-Preserving Adaptive Traffic Signal Control in a Connected Vehicle Environment (2305.07212v1)

Published 12 May 2023 in eess.SY, cs.CR, cs.SY, and math.OC

Abstract: Although Connected Vehicles (CVs) have demonstrated tremendous potential to enhance traffic operations, they can impose privacy risks on individual travelers, e.g., leaking sensitive information about their frequently visited places, routing behavior, etc. Despite the large body of literature that devises various algorithms to exploit CV information, research on privacy-preserving traffic control is still in its infancy. In this paper, we aim to fill this research gap and propose a privacy-preserving adaptive traffic signal control method using CV data. Specifically, we leverage secure Multi-Party Computation and differential privacy to devise a privacy-preserving CV data aggregation mechanism, which can calculate key traffic quantities without any CVs having to reveal their private data. We further develop a linear optimization model for adaptive signal control based on the traffic variables obtained via the data aggregation mechanism. The proposed linear programming problem is further extended to a stochastic programming problem to explicitly handle the noises added by the differentially private mechanism. Evaluation results show that the linear optimization model preserves privacy with a marginal impact on control performance, and the stochastic programming model can significantly reduce residual queues compared to the linear programming model, with almost no increase in vehicle delay. Overall, our methods demonstrate the feasibility of incorporating privacy-preserving mechanisms in CV-based traffic modeling and control, which guarantees both utility and privacy.

Citations (10)

Summary

We haven't generated a summary for this paper yet.