Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lattice-preserving $\mathcal{ALC}$ ontology embeddings with saturation (2305.07163v3)

Published 11 May 2023 in cs.LO and cs.AI

Abstract: Generating vector representations (embeddings) of OWL ontologies is a growing task due to its applications in predicting missing facts and knowledge-enhanced learning in fields such as bioinformatics. The underlying semantics of OWL ontologies are expressed using Description Logics (DLs). Initial approaches to generate embeddings relied on constructing a graph out of ontologies, neglecting the semantics of the logic therein. Recent semantic-preserving embedding methods often target lightweight DL languages like $\mathcal{EL}{++}$, ignoring more expressive information in ontologies. Although some approaches aim to embed more descriptive DLs like $\mathcal{ALC}$, those methods require the existence of individuals, while many real-world ontologies are devoid of them. We propose an ontology embedding method for the $\mathcal{ALC}$ DL language that considers the lattice structure of concept descriptions. We use connections between DL and Category Theory to materialize the lattice structure and embed it using an order-preserving embedding method. We show that our method outperforms state-of-the-art methods in several knowledge base completion tasks. Furthermore, we incoporate saturation procedures that increase the information within the constructed lattices. We make our code and data available at \url{https://github.com/bio-ontology-research-group/catE}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Fernando Zhapa-Camacho (6 papers)
  2. Robert Hoehndorf (27 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets