Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

E(n) Equivariant Message Passing Simplicial Networks (2305.07100v2)

Published 11 May 2023 in cs.LG and cs.AI

Abstract: This paper presents $\mathrm{E}(n)$ Equivariant Message Passing Simplicial Networks (EMPSNs), a novel approach to learning on geometric graphs and point clouds that is equivariant to rotations, translations, and reflections. EMPSNs can learn high-dimensional simplex features in graphs (e.g. triangles), and use the increase of geometric information of higher-dimensional simplices in an $\mathrm{E}(n)$ equivariant fashion. EMPSNs simultaneously generalize $\mathrm{E}(n)$ Equivariant Graph Neural Networks to a topologically more elaborate counterpart and provide an approach for including geometric information in Message Passing Simplicial Networks. The results indicate that EMPSNs can leverage the benefits of both approaches, leading to a general increase in performance when compared to either method. Furthermore, the results suggest that incorporating geometric information serves as an effective measure against over-smoothing in message passing networks, especially when operating on high-dimensional simplicial structures. Last, we show that EMPSNs are on par with state-of-the-art approaches for learning on geometric graphs.

Citations (13)

Summary

We haven't generated a summary for this paper yet.