Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Smell Detection and Recommendation in Natural Language Requirements (2305.07097v2)

Published 11 May 2023 in cs.SE

Abstract: Requirement specifications are typically written in natural language (NL) due to its usability across multiple domains and understandability by all stakeholders. However, unstructured NL is prone to quality problems (e.g., ambiguity) when writing requirements, which can result in project failures. To address this issue, we present a tool, named Paska, that takes as input any NL requirements, automatically detects quality problems as smells in the requirements, and offers recommendations to improve their quality. Our approach relies on NLP techniques and a state-of-the-art controlled natural language (CNL) for requirements (Rimay), to detect smells and suggest recommendations using patterns defined in Rimay to improve requirement quality. We evaluated Paska through an industrial case study in the financial domain involving 13 systems and 2725 annotated requirements. The results show that our tool is accurate in detecting smells (89% precision and recall) and suggesting appropriate Rimay pattern recommendations (96% precision and 94% recall).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Alvaro Veizaga (2 papers)
  2. Seung Yeob Shin (12 papers)
  3. Lionel C. Briand (29 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.