Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Control of a Back-Support Exoskeleton to Assist Carrying Activities (2305.06772v2)

Published 11 May 2023 in cs.RO

Abstract: Back-support exoskeletons are commonly used in the workplace to reduce low back pain risk for workers performing demanding activities. However, for the assistance of tasks differing from lifting, back-support exoskeletons potential has not been exploited extensively. This work focuses on the use of an active back-support exoskeleton to assist carrying. Two control strategies are designed that modulate the exoskeleton torques to comply with the task assistance requirements. In particular, two gait phase detection frameworks are exploited to adapt the assistance according to the legs' motion. The two strategies are assessed through an experimental analysis on ten subjects. Carrying task is performed without and with the exoskeleton assistance. Results prove the potential of the presented controls in assisting the task without hindering the gait movement and improving the usability experienced by users. Moreover, the exoskeleton assistance significantly reduces the lumbar load associated with the task, demonstrating its promising use for risk mitigation in the workplace.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. J. Frohm, V. Lindström, M. Winroth, and J. Stahre, “Levels of automation in manufacturing,” Ergonomia, 2008.
  2. B. Nitsche, “Exploring the potentials of automation in logistics and supply chain management: Paving the way for autonomous supply chains,” p. 51, 2021.
  3. S. Kumar, “Theories of musculoskeletal injury causation,” Ergonomics, vol. 44, no. 1, pp. 17–47, 2001.
  4. P. Coenen, V. Gouttebarge, A. S. A. M. Van Der Burght, J. H. van Dieën, M. H. W. Frings-Dresen, A. J. van der Beek, and A. Burdorf, “The effect of lifting during work on low back pain: a health impact assessment based on a meta-analysis,” Occup Environ Med, pp. oemed–2014, 2014.
  5. L. Punnett and D. H. Wegman, “Work-related musculoskeletal disorders: the epidemiologic evidence and the debate,” Journal of electromyography and kinesiology, vol. 14, no. 1, pp. 13–23, 2004.
  6. J. de Kok, P. Vroonhof, J. Snijders, G. Roullis, M. Clarke, K. Peereboom, P. van Dorst, and I. Isusi, “Work-related musculoskeletal disorders: Prevalence, costs and demographics in the eu,” European Agency for Safety and Health at Work, Publications Office, 2020.
  7. S. Bevan, “The impact of back pain on sickness absence in europe,” The Work Foundation, Lancaster, 2012.
  8. A. Baldassarre, L. Lulli, F. Cavallo, L. Fiorini, A. Mariniello, N. Mucci, and G. Arcangeli, “Industrial exoskeletons from bench to field: Human-machine interface and user experience in occupational settings and tasks,” Frontiers in Public Health, vol. 10, p. 4375, 2022.
  9. S. Toxiri, M. B. Näf, M. Lazzaroni, J. Fernández, M. Sposito, T. Poliero, L. Monica, S. Anastasi, et al., “Back-support exoskeletons for occupational use: An overview of technological advances and trends,” IISE Transactions on Occupational Ergonomics and Human Factors, pp. 1–13, 2019.
  10. M. P. de Looze, T. Bosch, F. Krause, K. S. Stadler, and L. W. O’Sullivan, “Exoskeletons for industrial application and their potential effects on physical work load,” Ergonomics, vol. 59, no. 5, pp. 671–681, 2016.
  11. T. Kermavnar, A. W. de Vries, M. P. de Looze, and L. W. O’Sullivan, “Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review,” Ergonomics, pp. 1–48, 2020.
  12. Z. Cheung, M. Feletto, J. Galante, and T. Waters, “Ergonomic guidelines for manual material handling,” DHHS (NIOSH) Publication, no. 2007-131, 2007.
  13. W. S. Marras, “Occupational low back disorder causation and control,” Ergonomics, vol. 43, no. 7, pp. 880–902, 2000.
  14. F. A. Panizzolo, I. Galiana, A. T. Asbeck, C. Siviy, K. Schmidt, K. G. Holt, and C. J. Walsh, “A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking,” Journal of neuroengineering and rehabilitation, vol. 13, no. 1, pp. 1–14, 2016.
  15. T. Lenzi, M. C. Carrozza, and S. K. Agrawal, “Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 6, pp. 938–948, 2013.
  16. M. B. Näf, A. S. Koopman, S. Baltrusch, C. Rodriguez-Guerrero, B. Vanderborght, and D. Lefeber, “Passive back support exoskeleton improves range of motion using flexible beams,” Frontiers in Robotics and AI, vol. 5, p. 72, 2018.
  17. S. J. Baltrusch, J. H. van Dieën, S. M. Bruijn, A. S. Koopman, C. A. M. van Bennekom, and H. Houdijk, “The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking,” Ergonomics, vol. 62, no. 7, pp. 903–916, 2019.
  18. Ž. Kozinc, S. Baltrusch, H. Houdijk, and N. Šarabon, “Short-term effects of a passive spinal exoskeleton on functional performance, discomfort and user satisfaction in patients with low back pain,” Journal of Occupational Rehabilitation, vol. 31, pp. 142–152, 2021.
  19. S. J. Baltrusch, J. H. van Dieën, C. A. M. van Bennekom, and H. Houdijk, “The effect of a passive trunk exoskeleton on functional performance in healthy individuals,” Applied ergonomics, vol. 72, pp. 94–106, 2018.
  20. T. Poliero, M. Lazzaroni, S. Toxiri, C. Di Natali, D. G. Caldwell, and J. Ortiz, “Applicability of an active back-support exoskeleton to carrying activities,” Frontiers in Robotics and AI, vol. 7, p. 579963, 2020.
  21. W. Wei, S. Zha, Y. Xia, J. Gu, and X. Lin, “A hip active assisted exoskeleton that assists the semi-squat lifting,” Applied Sciences, vol. 10, no. 7, p. 2424, 2020.
  22. L. A. Mateos, J. Ortiz, S. Toxiri, J. Fernández, J. Masood, and D. G. Caldwell, “Exoshoe: A sensory system to measure foot pressure in industrial exoskeleton,” in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).   IEEE, 2016, pp. 99–105.
  23. N. K. Rana, “Application of force sensing resistor (FSR) in design of pressure scanning system for plantar pressure measurement,” in 2009 Second International Conference on Computer and Electrical Engineering, vol. 2.   IEEE, 2009, pp. 678–685.
  24. Y. Wang, Q. Song, T. Ma, N. Yao, R. Liu, and B. Wang, “Research on human gait phase recognition algorithm based on multi-source information fusion,” Electronics, vol. 12, no. 1, p. 193, 2023.
  25. B. F. Mentiplay, M. Banky, R. A. Clark, M. B. Kahn, and G. Williams, “Lower limb angular velocity during walking at various speeds,” Gait & posture, vol. 65, pp. 190–196, 2018.
  26. M. Lazzaroni, V. Fanti, M. Sposito, G. Chini, F. Draicchio, C. Di Natali, D. G. Caldwell, and J. Ortiz, “Improving the efficacy of an active back-support exoskeleton for manual material handling using the accelerometer signal,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7716–7721, 2022.
  27. D. Stegeman and H. Hermens, “Standards for surface electromyography: The european project surface emg for non-invasive assessment of muscles (SENIAM),” Enschede: Roessingh Research and Development, pp. 108–12, 2007.
  28. J. D. M. Drake and J. P. Callaghan, “Elimination of electrocardiogram contamination from electromyogram signals: An evaluation of currently used removal techniques,” Journal of electromyography and kinesiology, vol. 16, no. 2, pp. 175–187, 2006.
  29. J. R. Potvin, R. W. Norman, and S. M. McGill, “Mechanically corrected EMG for the continuous estimation of erector spinae muscle loading during repetitive lifting,” European journal of applied physiology and occupational physiology, vol. 74, no. 1-2, pp. 119–132, 1996.
  30. S. M. McGill, “Electromyographic activity of the abdominal and low back musculature during the generation of isometric and dynamic axial trunk torque: implications for lumbar mechanics,” Journal of Orthopaedic Research, vol. 9, no. 1, pp. 91–103, 1991.
  31. A. Ranavolo, T. Varrecchia, S. Iavicoli, A. Marchesi, M. Rinaldi, M. Serrao, S. Conforto, M. Cesarelli, and F. Draicchio, “Surface electromyography for risk assessment in work activities designed using the “revised NIOSH lifting equation”,” International Journal of Industrial Ergonomics, vol. 68, pp. 34–45, 2018.
Citations (3)

Summary

We haven't generated a summary for this paper yet.