Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Extremality of the Tensor Product of Quantum Channels (2305.05795v1)

Published 9 May 2023 in math-ph, math.MP, and quant-ph

Abstract: Completely positive and trace preserving (CPT) maps are important for Quantum Information Theory, because they describe a broad class of of transformations of quantum states. There are also two other related classes of maps, the unital completely positive (UCP) maps and the unital completely positive and trace preserving (UCPT) maps. For these three classes, the maps from a finite dimensional Hilbert space $X$ to another one $Y$ is a compact convex set and, as such, it is the convex hull of its extreme points. The extreme points of these convex sets are yet not well understood. In this article we investigate the preservation of extremality under the tensor product. We prove that extremality is preserved for CPT or UCP maps, but for UCPT it is not always preserved.

Summary

We haven't generated a summary for this paper yet.