Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Personalize Recommendation based on Customers' Shopping Intents (2305.05279v2)

Published 9 May 2023 in cs.IR and cs.AI

Abstract: Understanding the customers' high level shopping intent, such as their desire to go camping or hold a birthday party, is critically important for an E-commerce platform; it can help boost the quality of shopping experience by enabling provision of more relevant, explainable, and diversified recommendations. However, such high level shopping intent has been overlooked in the industry due to practical challenges. In this work, we introduce Amazon's new system that explicitly identifies and utilizes each customer's high level shopping intents for personalizing recommendations. We develop a novel technique that automatically identifies various high level goals being pursued by the Amazon customers, such as "go camping", and "preparing for a beach party". Our solution is in a scalable fashion (in 14 languages across 21 countries). Then a deep learning model maps each customer's online behavior, e.g. product search and individual item engagements, into a subset of high level shopping intents. Finally, a realtime ranker considers both the identified intents as well as the granular engagements to present personalized intent-aware recommendations. Extensive offline analysis ensures accuracy and relevance of the new recommendations and we further observe an 10% improvement in the business metrics. This system is currently serving online traffic at amazon.com, powering several production features, driving significant business impacts

Citations (2)

Summary

We haven't generated a summary for this paper yet.