Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance Analysis of In-Band-Full-Duplex Multi-Cell Wideband IAB Networks (2305.04615v2)

Published 8 May 2023 in cs.IT, eess.SP, and math.IT

Abstract: This paper analyzes the performance of the 3rd Generation Partnership Project (3GPP)-inspired multi-cell wideband single-hop backhaul millimeter-wave-in-band-full-duplex (IBFD)-integrated access and backhaul (IAB) networks by using stochastic geometry. We model the wired-connected Next Generation NodeBs (gNBs) as the Mat\'ern hard-core point process (MHCPP) to meet the real-world deployment requirement and reduce the cost caused by wired connection in the network. We first derive association probabilities that reflect how likely the typical user-equipment is served by a gNB or an IAB-node based on the maximum long-term averaged biased-received-desired-signal power criteria. Further, by leveraging the composite Gamma-Lognormal distribution, we derive the closed-form signal to interference plus noise ratio coverage, capacity with outage, and ergodic capacity of the network. In order to avoid underestimating the noise, we consider the sidelobe gain on inter-cell interference links and the analog to digital converter quantization noise. Compared with the half-duplex transmission, numerical results show an enhanced capacity with outage and ergodic capacity provided by IBFD under successful self-interference cancellation. We also study how the power bias and density ratio of the IAB-node to gNB, and the hard-core distance can affect system performances.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. J. Zhang, “In-band-full-duplex integrated access and backhaul enabled next generation wireless networks,” Ph.D. dissertation, Inst. Imaging, Data, Commun., Univ. Edinburgh, Edinburgh, UK, Oct. 2023. [Online]. Available: https://era.ed.ac.uk/handle/1842/41226
  2. J. Zhang, N. Garg, M. Holm, and T. Ratnarajah, “Design of full duplex millimeter-wave integrated access and backhaul networks,” IEEE Wireless Commun. Mag., vol. 28, no. 1, pp. 60–67, Feb. 2021.
  3. T. Zhang, S. Biswas, and T. Ratnarajah, “An analysis on wireless edge caching in in-band full-duplex FR2-IAB networks,” IEEE Access, vol. 8, pp. 164 987–165 002, Sep. 2020.
  4. S. Park, A. Alkhateeb, and R. W. Heath, “Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 2907–2920, May 2017.
  5. M. N. Kulkarni, A. Ghosh, and J. G. Andrews, “A comparison of MIMO techniques in downlink millimeter wave cellular networks with hybrid beamforming,” IEEE Trans. Commun., vol. 64, no. 5, pp. 1952–1967, March 2016.
  6. Z. Xiao, P. Xia, and X. Xia, “Full-duplex millimeter-wave communication,” IEEE Wireless Commun. Mag., vol. 24, no. 6, pp. 136–143, Dec. 2017.
  7. A. C. Cirik, S. Biswas, S. Vuppala, and T. Ratnarajah, “Beamforming design for full-duplex MIMO interference channels–QoS and energy-efficiency considerations,” IEEE Trans. Commun., vol. 64, no. 11, pp. 4635–4651, Nov. 2016.
  8. H. Luo, A. Bishnu, and T. Ratnarajah, “Design and analysis of in-band full-duplex private 5G networks using FR2 band,” IEEE Access, vol. 9, pp. 166 886–166 905, Dec. 2021.
  9. A. Bishnu, M. Holm, and T. Ratnarajah, “Performance evaluation of full-duplex IAB multi-cell and multi-user network for FR2 band,” IEEE Access, vol. 9, pp. 72 269–72 283, May 2021.
  10. J. Zhang, H. Luo, N. Garg, M. Holm, and T. Ratnarajah, “Design and analysis of mmWave full-duplex integrated access and backhaul networks,” in Proc. IEEE ICC, June 2021.
  11. J. Zhang, H. Luo, N. Garg, A. Bishnu, M. Holm, and T. Ratnarajah, “Design and analysis of wideband in-band-full-duplex FR2-IAB networks,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 4183–4196, June 2022.
  12. 3GPP, “NR; Study on Integrated Access and Backhaul,” TR 38.874 (Rel. 16), Dec. 2018.
  13. J. García-Rois, R. Banirazi, F. J. González-Castaño, B. Lorenzo, and J. C. Burguillo, “Delay-aware optimization framework for proportional flow delay differentiation in millimeter-wave backhaul cellular networks,” IEEE Trans. Commun., vol. 66, no. 5, pp. 2037–2051, May 2018.
  14. C. Saha, M. Afshang, and H. S. Dhillon, “Bandwidth partitioning and downlink analysis in millimeter wave integrated access and backhaul for 5G,” IEEE Trans. Wireless Commun., vol. 17, no. 12, pp. 8195–8210, Oct. 2018.
  15. M. Polese, M. Giordani, T. Zugno, A. Roy, S. Goyal, D. Castor, and M. Zorzi, “Integrated access and backhaul in 5G mmwave networks: Potential and challenges,” IEEE Commun. Mag., vol. 58, no. 3, pp. 62–68, March 2020.
  16. C. Saha and H. S. Dhillon, “Millimeter wave integrated access and backhaul in 5G: Performance analysis and design insights,” IEEE J. Select. Areas Commun., vol. 37, no. 12, pp. 2669–2684, Dec. 2019.
  17. S. Singh, M. N. Kulkarni, A. Ghosh, and J. G. Andrews, “Tractable model for rate in self-backhauled millimeter wave cellular networks,” IEEE J. Select. Areas Commun., vol. 33, no. 10, pp. 2196–2211, May 2015.
  18. T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, May 2013.
  19. T. Bai and R. W. Heath, “Coverage and rate analysis for millimeter-wave cellular networks,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 1100–1114, Oct. 2015.
  20. H.-S. Jo, Y. J. Sang, P. Xia, and J. G. Andrews, “Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis,” IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3484–3495, Oct. 2012.
  21. Y. Zhu, G. Zheng, and M. Fitch, “Secrecy rate analysis of UAV-enabled mmWave networks using Matérn hardcore point processes,” IEEE J. Select. Areas Commun., vol. 36, no. 7, pp. 1397–1409, April 2018.
  22. S. S. Kalamkar and M. Haenggi, “Simple approximations of the SIR meta distribution in general cellular networks,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4393–4406, Feb. 2019.
  23. J. Lyu and H.-M. Wang, “Secure UAV random networks with minimum safety distance,” IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2856–2861, March 2021.
  24. H. He, S. Biswas, P. Aquilina, T. Ratnarajah, and J. Yang, “Performance analysis of multi-cell full-duplex cellular networks,” IEEE Access, vol. 8, pp. 206 914–206 930, Nov. 2020.
  25. H. He, J. Xue, T. Ratnarajah, F. A. Khan, and C. B. Papadias, “Modeling and analysis of cloud radio access networks using Matérn hard-core point processes,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4074–4087, June 2016.
  26. A. Sharma, R. K. Ganti, and J. K. Milleth, “Joint backhaul-access analysis of full duplex self-backhauling heterogeneous networks,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1727–1740, Jan. 2017.
  27. A. Thornburg, T. Bai, and R. W. Heath, “Performance analysis of outdoor mmWave ad hoc networks,” IEEE Trans. Signal Processing, vol. 64, no. 15, pp. 4065–4079, Aug. 2016.
  28. M. N. Kulkarni, A. Alkhateeb, and J. G. Andrews, “A tractable model for per user rate in multiuser millimeter wave cellular networks,” in Proc. 49th Asilomar Conference on Signals, Systems and Computers, Nov. 2015.
  29. K. Cho, J. Lee, and C. G. Kang, “Stochastic geometry-based coverage and rate analysis under Nakagami Log-normal composite fading channel for downlink cellular networks,” IEEE Commun. Lett., vol. 21, no. 6, pp. 1437–1440, June 2017.
  30. ——, “Mean interference in hard-core wireless networks,” IEEE Commun. Lett., vol. 15, no. 8, pp. 792–794, Aug. 2011.
  31. T. Bai, R. Vaze, and R. W. Heath, “Analysis of blockage effects on urban cellular networks,” IEEE Trans. Wireless Commun., vol. 13, no. 9, pp. 5070–5083, Sep. 2014.
  32. M. Nakagami, “The m-distribution—a general formula of intensity distribution of rapid fading,” in Statistical Methods in Radio Wave Propagation.   W. G. Hoffman, Ed, Oxford, U.K.: Pergamon, 1960.
  33. C. Zhong, M. Matthaiou, G. K. Karagiannidis, and T. Ratnarajah, “Generic ergodic capacity bounds for fixed-gain AF dual-hop relaying systems,” IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3814–3824, Oct. 2011.
  34. A. M. Sayeed, “Deconstructing multiantenna fading channels,” IEEE Trans. Signal Processing, vol. 50, no. 10, pp. 2563–2579, Oct. 2002.
  35. O. E. Ayach, R. W. Heath, S. Abu-Surra, S. Rajagopal, and Z. Pi, “The capacity optimality of beam steering in large millimeter wave MIMO systems,” in Proc. IEEE SPAWC, June 2012.
  36. I. P. Roberts, J. G. Andrews, and S. Vishwanath, “Hybrid beamforming for millimeter wave full-duplex under limited receive dynamic range,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7758–7772, June 2021.
  37. R. Giuliano and F. Mazzenga, “Exponential effective SINR approximations for OFDM/OFDMA-based cellular system planning,” IEEE Trans. Wireless Commun., vol. 8, no. 9, pp. 4434–4439, Oct. 2009.
  38. A. Oborina, M. Moisio, and V. Koivunen, “Performance of mobile MIMO OFDM systems with application to UTRAN LTE downlink,” IEEE Trans. Wireless Commun., vol. 11, no. 8, pp. 2696–2706, Aug. 2012.
  39. S. Singh, H. S. Dhillon, and J. G. Andrews, “Offloading in heterogeneous networks: Modeling, analysis, and design insights,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 2484–2497, May 2013.
  40. A. Al-Hourani, R. J. Evans, and S. Kandeepan, “Nearest neighbor distance distribution in hard-core point processes,” IEEE Commun. Lett., vol. 20, no. 9, pp. 1872–1875, Sep. 2016.
  41. C. Chen, R. C. Elliott, and W. A. Krzymień, “Empirical distribution of nearest-transmitter distance in wireless networks modeled by Matérn hard core point processes,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1740–1749, Oct. 2018.
  42. IEEE, “IEEE 802.11ad standard draft D0.1,” 2012. [Online]. Available: https://www.ieee802.org/11/Reports/tgadupdate.htm
  43. A. I. Sulyman, A. T. Nassar, M. K. Samimi, G. R. Maccartney, T. S. Rappaport, and A. Alsanie, “Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands,” IEEE Commun. Mag., vol. 52, no. 9, pp. 78–86, Sep. 2014.
  44. J. Zhang, L. Dai, X. Li, Y. Liu, and L. Hanzo, “On low-resolution ADCs in practical 5G millimeter-wave massive MIMO systems,” IEEE Commun. Mag., vol. 56, no. 7, pp. 205–211, April 2018.
  45. S. Ahmed, T. Ratnarajah, M. Sellathurai, and C. F. N. Cowan, “Iterative receivers for MIMO-OFDM and their convergence behavior,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 461–468, June 2009.
  46. H. E. Salzer, R. Zucker, and R. Capuano, “Table of the zeros and weight factors of the first 20 hermite polynomials,” Journal of research of the National Bureau of Standards, vol. 48, pp. 111–116, Feb. 1952.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com