Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TAPS: Connecting Certified and Adversarial Training (2305.04574v2)

Published 8 May 2023 in cs.LG

Abstract: Training certifiably robust neural networks remains a notoriously hard problem. On one side, adversarial training optimizes under-approximations of the worst-case loss, which leads to insufficient regularization for certification, while on the other, sound certified training methods optimize loose over-approximations, leading to over-regularization and poor (standard) accuracy. In this work we propose TAPS, an (unsound) certified training method that combines IBP and PGD training to yield precise, although not necessarily sound, worst-case loss approximations, reducing over-regularization and increasing certified and standard accuracies. Empirically, TAPS achieves a new state-of-the-art in many settings, e.g., reaching a certified accuracy of $22\%$ on TinyImageNet for $\ell_\infty$-perturbations with radius $\epsilon=1/255$. We make our implementation and networks public at https://github.com/eth-sri/taps.

Citations (10)

Summary

We haven't generated a summary for this paper yet.