Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine-Learning-Based Classification of GPS Signal Reception Conditions Using a Dual-Polarized Antenna in Urban Areas (2305.03956v1)

Published 6 May 2023 in cs.LG and eess.SP

Abstract: In urban areas, dense buildings frequently block and reflect global positioning system (GPS) signals, resulting in the reception of a few visible satellites with many multipath signals. This is a significant problem that results in unreliable positioning in urban areas. If a signal reception condition from a certain satellite can be detected, the positioning performance can be improved by excluding or de-weighting the multipath contaminated satellite signal. Thus, we developed a machine-learning-based method of classifying GPS signal reception conditions using a dual-polarized antenna. We employed a decision tree algorithm for classification using three features, one of which can be obtained only from a dual-polarized antenna. A machine-learning model was trained using GPS signals collected from various locations. When the features extracted from the GPS raw signal are input, the generated machine-learning model outputs one of the three signal reception conditions: non-line-of-sight (NLOS) only, line-of-sight (LOS) only, or LOS+NLOS. Multiple testing datasets were used to analyze the classification accuracy, which was then compared with an existing method using dual single-polarized antennas. Consequently, when the testing dataset was collected at different locations from the training dataset, a classification accuracy of 64.47% was obtained, which was slightly higher than the accuracy of the existing method using dual single-polarized antennas. Therefore, the dual-polarized antenna solution is more beneficial than the dual single-polarized antenna solution because it has a more compact form factor and its performance is similar to that of the other solution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. F. Causa and G. Fasano, “Improving navigation in GNSS-challenging environments: Multi-UAS cooperation and generalized dilution of precision,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 3, pp. 1462–1479, 2021.
  2. S. Kim, J. Park, J.-K. Yun, and J. Seo, “Motion planning by reinforcement learning for an unmanned aerial vehicle in virtual open space with static obstacles,” in Proc. ICCAS, 2020, pp. 784–787.
  3. H. Yoon, H. Seok, C. Lim, and B. Park, “An online SBAS service to improve drone navigation performance in high-elevation masked areas,” Sensors, vol. 20, no. 11, pp. 1–20, 2020.
  4. A. K. Sun, H. Chang, S. Pullen, H. Kil, J. Seo, Y. J. Morton, and J. Lee, “Markov chain-based stochastic modeling of deep signal fading: Availability assessment of dual-frequency GNSS-based aviation under ionospheric scintillation,” Space Weather, vol. 19, no. 9, pp. 1–19, Sep. 2021.
  5. H. Lee, S. Pullen, J. Lee, B. Park, M. Yoon, and J. Seo, “Optimal parameter inflation to enhance the availability of single-frequency GBAS for intelligent air transportation,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10, pp. 17 801–17 808, Oct. 2022.
  6. K. Sun, H. Chang, J. Lee, J. Seo, Y. Jade Morton, and S. Pullen, “Performance benefit from dual-frequency GNSS-based aviation applications under ionospheric scintillation: A new approach to fading process modeling,” in Proc. ION ITM, 2020, pp. 889–899.
  7. M. Jia, H. Lee, J. Khalife, Z. M. Kassas, and J. Seo, “Ground vehicle navigation integrity monitoring for multi-constellation GNSS fused with cellular signals of opportunity,” in Proc. IEEE ITSC, 2021, pp. 3978–3983.
  8. H. Lee, J. Seo, and Z. Kassas, “Integrity-based path planning strategy for urban autonomous vehicular navigation using GPS and cellular signals,” in Proc. ION GNSS+, 2020, pp. 2347–2357.
  9. H. Lee, T. Kang, and J. Seo, “Safety distance visualization tool for LTE-based UAV positioning in urban areas,” J. Adv. Navig. Technol., vol. 23, no. 5, pp. 408–414, 2019.
  10. H. Lee, J. Seo, and Z. Kassas, “Urban road safety prediction: A satellite navigation perspective,” IEEE Intell. Transp. Syst. Mag., vol. 14, no. 6, pp. 94–106, Nov.-Dec. 2022.
  11. H. Lee and J. Seo, “A preliminary study of machine-learning-based ranging with LTE channel impulse response in multipath environment,” in Proc. IEEE ICCE-Asia, 2020.
  12. W. Kim, P.-W. Son, S. G. Park, S. H. Park, and J. Seo, “First demonstration of the Korean eLoran accuracy in a narrow waterway using improved ASF maps,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 2, pp. 1492–1496, Apr. 2022.
  13. S. Lee, E. Kim, and J. Seo, “SFOL DME pulse shaping through digital predistortion for high-accuracy DME,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 3, pp. 2616–2620, Jun. 2022.
  14. J. H. Rhee, S. Kim, P.-W. Son, and J. Seo, “Enhanced accuracy simulator for a future Korean nationwide eLoran system,” IEEE Access, vol. 9, pp. 115 042–115 052, Aug. 2021.
  15. K. Park, W. Kim, and J. Seo, “Effects of initial attitude estimation errors on loosely coupled smartphone GPS/IMU integration system,” in Proc. ICCAS, 2020, pp. 800–803.
  16. G. MacGougan, G. Lachapelle, R. Klukas, K. Siu, L. Garin, J. Shewfelt, and G. Cox, “Performance analysis of a stand-alone high-sensitivity receiver,” GPS Solut., vol. 6, no. 3, pp. 179–195, 2002.
  17. N. Shen, L. Chen, L. Wang, X. Lu, T. Tao, J. Yan, and R. Chen, “Site‑specific real‑time GPS multipath mitigation based on coordinate time series window matching,” GPS Solut., vol. 24, no. 3, pp. 1–14, 2020.
  18. Y. Lee and B. Park, “Seamless accurate positioning in deep urban area using DGNSS and CMC-based multipath mitigation,” in Proc. ION GNSS+, Sep. 2020, pp. 1690–1719.
  19. H. Lee and J. Seo, “Performance evaluation and hybrid application of the greedy and predictive UAV trajectory optimization methods for localizing a target mobile device,” in Proc. ION ITM, Jan. 2023, pp. 161–171.
  20. N. Zhu, J. Marais, D. Bétaille, and M. Berbineau, “GNSS position integrity in urban environments: A review of literature,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 9, pp. 2762–2778, 2018.
  21. N. Kubo, K. Kobayashi, and R. Furukawa, “GNSS multipath detection using continuous time-series C/N0,” Sensors, vol. 20, no. 14, pp. 1–25, 2020.
  22. T. Suzuki and Y. Amano, “NLOS multipath classification of GNSS signal correlation output using machine learning,” Sensors, vol. 21, no. 7, pp. 1–19, 2021.
  23. P. Closas and C. Fernández-Prades, “A statistical multipath detector for antenna array based GNSS receivers,” IEEE Trans. Wireless Commun., vol. 10, no. 3, pp. 916–929, 2011.
  24. L. Massarweh, M. Fortunato, and C. Gioia, “Assessment of real-time multipath detection with Android raw GNSS measurements by using a Xiaomi Mi 8 smartphone,” in Proc. IEEE/ION PLANS, Apr. 2020, pp. 1111–1122.
  25. H. Lee and J. Seo, “Performance comparison of machine learning algorithms for received signal strength-based indoor LOS/NLOS classification of LTE signals,” J. Position. Navig. Timing, vol. 11, no. 4, pp. 361–368, 2022.
  26. X. Bai, W. Wen, and L.-T. Hsu, “Using sky-pointing fish-eye camera and LiDAR to aid GNSS single-point positioning in urban canyons,” IET Intel. Transport Syst., vol. 14, no. 8, pp. 908–918, 2020.
  27. L. Wang, P. D. Groves, and M. Ziebart, “Multi-constellation GNSS performance evaluation for urban canyons using large virtual reality city models,” J. Navig., vol. 65, pp. 459–476, 2012.
  28. S. Miura, S. Hisaka, and S. Kamijo, “GPS multipath detection and rectification using 3D maps,” in Proc. IEEE ITSC, Oct. 2013, pp. 1–7.
  29. P. R. R. Strode and P. D. Groves, “GNSS multipath detection using three-frequency signal-to-noise measurements,” GPS Solut., vol. 20, pp. 399–412, 2016.
  30. P. D. Groves, Z. Jiang, B. Skelton, P. Cross, L. Lau, Y. Adane, and I. Kale, “Novel multipath mitigation methods using a dual-polarization antenna,” in Proc. ION GNSS, Sep. 2010, pp. 140–151.
  31. S. Kim, H. Lee, and K. Park, “GPS multipath detection based on carrier-to-noise-density ratio measurements from a dual-polarized antenna,” in Proc. ICCAS, 2021, pp. 1099–1103.
  32. M. Caamano, O. G. Crespillo, D. Gerbeth, and A. Grosch, “Detection of GNSS multipath with time-differenced code-minus-carrier for land-based applications,” in Proc. ENC, Nov. 2020, pp. 1–12.
  33. L. Xu and J. Rife, “NLOS and multipath detection using Doppler shift measurements,” in Proc. ION GNSS+, Sep. 2019, pp. 4064–4075.
  34. L.-T. Hsu, “GNSS multipath detection using a machine learning approach,” in Proc. IEEE ITSC, Oct. 2017, pp. 1–6.
  35. T. Suzuki, K. Kusama, and Y. Amano, “NLOS multipath detection using convolutional neural network,” in Proc. ION GNSS+, Sep. 2020, pp. 2989–3000.
  36. R. Sun, L. Fu, G. Wang, Q. Cheng, and L.-T. Hsu, “Using dual-polarization GPS antenna with optimized adaptive neuro-fuzzy inference system to improve single point positioning accuracy in urban canyons,” Navig. J. Inst. Navig., vol. 68, no. 1, pp. 41–60, 2021.
  37. T. Suzuki, Y. Nakano, and Y. Amano, “NLOS multipath detection by using machine learning in urban environments,” in Proc. ION GNSS+, Sep. 2017, pp. 3958–3967.
  38. R. Sun, G. Wanga, W. Zhang, L.-T. Hsu, and W. Y. Ochieng, “A gradient boosting decision tree based GPS signal reception classification algorithm,” Appl. Soft Comput. J., vol. 86, pp. 1–12, 2020.
  39. S. Kim, J. Byun, and K. Park, “Machine learning-based GPS multipath detection method using dual antennas,” in Proc. ASCC, May 2022, pp. 691–695.
  40. 3Dbuildings. https://3dbuildings.com/.
  41. Remcom. Wireless InSite.
  42. B. Guermah, H. E. Ghazi, T. Sadiki, and H. Guermah, “A robust GNSS LOS/multipath signal classifier based on the fusion of information and machine learning for intelligent transportation systems,” in Proc. IEEE ICTMOD, Nov. 2018, pp. 94–100.
  43. I. S. Damanik, A. P. Windarto, A. Wanto, Poningsih, S. R. Andani, and W. Saputra, “Decision tree optimization in C4.5 algorithm using genetic algorithm,” in Proc. ICCSAM, 2018, pp. 1–6.
  44. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.
  45. A. Rácz, D. Bajusz, and K. Héberger, “Effect of dataset size and train/test split ratios in QSAR/QSPR multiclass classification,” Molecules, vol. 26, no. 4, pp. 1–16, 2021.
Citations (7)

Summary

We haven't generated a summary for this paper yet.