Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LOGO-Former: Local-Global Spatio-Temporal Transformer for Dynamic Facial Expression Recognition (2305.03343v1)

Published 5 May 2023 in cs.CV and cs.MM

Abstract: Previous methods for dynamic facial expression recognition (DFER) in the wild are mainly based on Convolutional Neural Networks (CNNs), whose local operations ignore the long-range dependencies in videos. Transformer-based methods for DFER can achieve better performances but result in higher FLOPs and computational costs. To solve these problems, the local-global spatio-temporal Transformer (LOGO-Former) is proposed to capture discriminative features within each frame and model contextual relationships among frames while balancing the complexity. Based on the priors that facial muscles move locally and facial expressions gradually change, we first restrict both the space attention and the time attention to a local window to capture local interactions among feature tokens. Furthermore, we perform the global attention by querying a token with features from each local window iteratively to obtain long-range information of the whole video sequence. In addition, we propose the compact loss regularization term to further encourage the learned features have the minimum intra-class distance and the maximum inter-class distance. Experiments on two in-the-wild dynamic facial expression datasets (i.e., DFEW and FERV39K) indicate that our method provides an effective way to make use of the spatial and temporal dependencies for DFER.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Fuyan Ma (7 papers)
  2. Bin Sun (74 papers)
  3. Shutao Li (28 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.