Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ANetQA: A Large-scale Benchmark for Fine-grained Compositional Reasoning over Untrimmed Videos (2305.02519v1)

Published 4 May 2023 in cs.CV and cs.CL

Abstract: Building benchmarks to systemically analyze different capabilities of video question answering (VideoQA) models is challenging yet crucial. Existing benchmarks often use non-compositional simple questions and suffer from language biases, making it difficult to diagnose model weaknesses incisively. A recent benchmark AGQA poses a promising paradigm to generate QA pairs automatically from pre-annotated scene graphs, enabling it to measure diverse reasoning abilities with granular control. However, its questions have limitations in reasoning about the fine-grained semantics in videos as such information is absent in its scene graphs. To this end, we present ANetQA, a large-scale benchmark that supports fine-grained compositional reasoning over the challenging untrimmed videos from ActivityNet. Similar to AGQA, the QA pairs in ANetQA are automatically generated from annotated video scene graphs. The fine-grained properties of ANetQA are reflected in the following: (i) untrimmed videos with fine-grained semantics; (ii) spatio-temporal scene graphs with fine-grained taxonomies; and (iii) diverse questions generated from fine-grained templates. ANetQA attains 1.4 billion unbalanced and 13.4 million balanced QA pairs, which is an order of magnitude larger than AGQA with a similar number of videos. Comprehensive experiments are performed for state-of-the-art methods. The best model achieves 44.5% accuracy while human performance tops out at 84.5%, leaving sufficient room for improvement.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Zhou Yu (206 papers)
  2. Lixiang Zheng (1 paper)
  3. Zhou Zhao (219 papers)
  4. Fei Wu (317 papers)
  5. Jianping Fan (51 papers)
  6. Kui Ren (169 papers)
  7. Jun Yu (233 papers)
Citations (8)