Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating BERT-based Scientific Relation Classifiers for Scholarly Knowledge Graph Construction on Digital Library Collections (2305.02291v1)

Published 3 May 2023 in cs.DL and cs.CL

Abstract: The rapid growth of research publications has placed great demands on digital libraries (DL) for advanced information management technologies. To cater to these demands, techniques relying on knowledge-graph structures are being advocated. In such graph-based pipelines, inferring semantic relations between related scientific concepts is a crucial step. Recently, BERT-based pre-trained models have been popularly explored for automatic relation classification. Despite significant progress, most of them were evaluated in different scenarios, which limits their comparability. Furthermore, existing methods are primarily evaluated on clean texts, which ignores the digitization context of early scholarly publications in terms of machine scanning and optical character recognition (OCR). In such cases, the texts may contain OCR noise, in turn creating uncertainty about existing classifiers' performances. To address these limitations, we started by creating OCR-noisy texts based on three clean corpora. Given these parallel corpora, we conducted a thorough empirical evaluation of eight Bert-based classification models by focusing on three factors: (1) Bert variants; (2) classification strategies; and, (3) OCR noise impacts. Experiments on clean data show that the domain-specific pre-trained Bert is the best variant to identify scientific relations. The strategy of predicting a single relation each time outperforms the one simultaneously identifying multiple relations in general. The optimal classifier's performance can decline by around 10% to 20% in F-score on the noisy corpora. Insights discussed in this study can help DL stakeholders select techniques for building optimal knowledge-graph-based systems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.