Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating the error in CG-like algorithms for least-squares and least-norm problems (2305.02044v1)

Published 3 May 2023 in math.NA and cs.NA

Abstract: In [Meurant, Pape\v{z}, Tich\'y; Numerical Algorithms 88, 2021], we presented an adaptive estimate for the energy norm of the error in the conjugate gradient (CG) method. In this paper, we extend the estimate to algorithms for solving linear approximation problems with a general, possibly rectangular matrix that are based on applying CG to a system with a positive (semi-)definite matrix build from the original matrix. We show that the resulting estimate preserves its key properties: it can be very cheaply evaluated, and it is numerically reliable in finite-precision arithmetic under some mild assumptions. We discuss algorithms based on Hestenes-Stiefel-like implementation (often called CGLS and CGNE in the literature) as well as on bidiagonalization (LSQR and CRAIG), and both unpreconditioned and preconditioned variants. The numerical experiments confirm the robustness and very satisfactory behaviour of the estimate.

Summary

We haven't generated a summary for this paper yet.