Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Meta-Learning for Zero-Shot Relation Triplet Extraction (2305.01920v1)

Published 3 May 2023 in cs.CL

Abstract: The zero-shot relation triplet extraction (ZeroRTE) task aims to extract relation triplets from a piece of text with unseen relation types. The seminal work adopts the pre-trained generative model to generate synthetic samples for new relations. However, current generative models lack the optimization process of model generalization on different tasks during training, and thus have limited generalization capability. For this reason, we propose a novel generative meta-learning framework which exploits the `learning-to-learn' ability of meta-learning to boost the generalization capability of generative models. Specifically, we first design a task-aware generative model which can learn the general knowledge by forcing the optimization process to be conducted across multiple tasks. Based on it, we then present three generative meta-learning approaches designated for three typical meta-learning categories. Extensive experimental results demonstrate that our framework achieves a new state-of-the-art performance for the ZeroRTE task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wanli Li (5 papers)
  2. Tieyun Qian (20 papers)