Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 TPS
Gemini 2.5 Pro 37 TPS Pro
GPT-5 Medium 38 TPS
GPT-5 High 27 TPS Pro
GPT-4o 90 TPS
GPT OSS 120B 467 TPS Pro
Kimi K2 139 TPS Pro
2000 character limit reached

Memory of recurrent networks: Do we compute it right? (2305.01457v2)

Published 2 May 2023 in cs.LG and stat.ML

Abstract: Numerical evaluations of the memory capacity (MC) of recurrent neural networks reported in the literature often contradict well-established theoretical bounds. In this paper, we study the case of linear echo state networks, for which the total memory capacity has been proven to be equal to the rank of the corresponding Kalman controllability matrix. We shed light on various reasons for the inaccurate numerical estimations of the memory, and we show that these issues, often overlooked in the recent literature, are of an exclusively numerical nature. More explicitly, we prove that when the Krylov structure of the linear MC is ignored, a gap between the theoretical MC and its empirical counterpart is introduced. As a solution, we develop robust numerical approaches by exploiting a result of MC neutrality with respect to the input mask matrix. Simulations show that the memory curves that are recovered using the proposed methods fully agree with the theory.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube