Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Subquadratic Bound for Online Bisection (2305.01420v4)

Published 2 May 2023 in cs.DS

Abstract: The online bisection problem is a natural dynamic variant of the classic optimization problem, where one has to dynamically maintain a partition of $n$ elements into two clusters of cardinality $n/2$. During runtime, an online algorithm is given a sequence of requests, each being a pair of elements: an inter-cluster request costs one unit while an intra-cluster one is free. The algorithm may change the partition, paying a unit cost for each element that changes its cluster. This natural problem admits a simple deterministic $O(n2)$-competitive algorithm [Avin et al., DISC 2016]. While several significant improvements over this result have been obtained since the original work, all of them either limit the generality of the input or assume some form of resource augmentation (e.g., larger clusters). Moreover, the algorithm of Avin et al. achieves the best known competitive ratio even if randomization is allowed. In this paper, we present the first randomized online algorithm that breaks this natural quadratic barrier and achieves a competitive ratio of $\tilde{O}(n{23/12})$ without resource augmentation and for an arbitrary sequence of requests.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Polynomial time approximation schemes for dense instances of NP-hard problems. Journal of Computer and System Sciences, 58(1):193–210, 1999. doi:10.1006/jcss.1998.1605.
  2. Dynamic balanced graph partitioning. SIAM Journal on Discrete Mathematics, 34(3):1791–1812, 2020. doi:10.1137/17M1158513.
  3. Online balanced repartitioning. In Proc. 30th Int. Symp. on Distributed Computing (DISC), pages 243–256, 2016. doi:10.1007/978-3-662-53426-7_18.
  4. Improved analysis of online balanced clustering. In Proc. 19th Workshop on Approximation and Online Algorithms (WAOA), pages 224–233, 2021. doi:10.1007/978-3-030-92702-8_14.
  5. An optimal on-line algorithm for metrical task system. Journal of the ACM, 39(4):745–763, 1992. doi:10.1145/146585.146588.
  6. Online Computation and Competitive Analysis. Cambridge University Press, 1998.
  7. A polylogarithmic approximation of the minimum bisection. SIAM Journal on Computing, 31(4):1090–1118, 2002. doi:10.1137/S0097539701387660.
  8. Approximating the minimum bisection size. In Proc. 32nd ACM Symp. on Theory of Computing (STOC), pages 530–536, 2000. doi:10.1145/335305.335370.
  9. Online balanced repartitioning of dynamic communication patterns in polynomial time. In 2nd Symposium on Algorithmic Principles of Computer Systems (APOCS), pages 40–54, 2021. doi:10.1137/1.9781611976489.4.
  10. Tight bounds for online graph partitioning. In Proc. 32nd ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 2799–2818, 2021. doi:10.1137/1.9781611976465.166.
  11. Efficient distributed workload (re-)embedding. In Proc. SIGMETRICS/Performance Joint Int. Conf. on Measurement and Modeling of Computer Systems, pages 43–44, 2019. doi:10.1145/3309697.3331503.
  12. Robert Krauthgamer. Minimum bisection. In Encyclopedia of Algorithms, pages 1294–1297. Springer, 2016. doi:10.1007/978-1-4939-2864-4_231.
  13. A polylogarithmic approximation of the minimum bisection. SIAM Review, 48(1):99–130, 2006. doi:10.1137/050640904.
  14. The complexity of greatest common divisor computations. In 1st Symposium on Algorithmic Number Theory (ANTS-I), pages 184–193, 1994. doi:10.1007/3-540-58691-1_56.
  15. Brief announcement: Deterministic lower bound for dynamic balanced graph partitioning. In Proc. 39th ACM Symp. on Principles of Distributed Computing (PODC), pages 461–463, 2020. doi:10.1145/3382734.3405696.
  16. Optimal online balanced graph partitioning. In Proc. 40th IEEE Int. Conf. on Computer Communications (INFOCOM), pages 1–9, 2021. doi:10.1109/INFOCOM42981.2021.9488824.
  17. Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In Proc. 40th ACM Symp. on Theory of Computing (STOC), pages 255–264, 2008. doi:10.1145/1374376.1374415.
  18. Approximate dynamic balanced graph partitioning. In Proc. 34th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pages 401–409, 2022. doi:10.1145/3490148.3538563.
  19. Improved bounds for online balanced graph re-partitioning. In Proc. 30th European Symp. on Algorithms (ESA), pages 83:1–83:15, 2022. doi:10.4230/LIPIcs.ESA.2022.83.
  20. Finding k cuts within twice the optimal. SIAM Journal on Computing, 24(1):101–108, 1995. doi:10.1137/S0097539792251730.
  21. Amortized efficiency of list update and paging rules. Communications of the ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com