Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incremental Maximization via Continuization (2305.01310v1)

Published 2 May 2023 in cs.DS and cs.DM

Abstract: We consider the problem of finding an incremental solution to a cardinality-constrained maximization problem that not only captures the solution for a fixed cardinality, but also describes how to gradually grow the solution as the cardinality bound increases. The goal is to find an incremental solution that guarantees a good competitive ratio against the optimum solution for all cardinalities simultaneously. The central challenge is to characterize maximization problems where this is possible, and to determine the best-possible competitive ratio that can be attained. A lower bound of $2.18$ and an upper bound of $\varphi + 1 \approx 2.618$ are known on the competitive ratio for monotone and accountable objectives [Bernstein et al., Math. Prog., 2022], which capture a wide range of maximization problems. We introduce a continuization technique and identify an optimal incremental algorithm that provides strong evidence that $\varphi + 1$ is the best-possible competitive ratio. Using this continuization, we obtain an improved lower bound of $2.246$ by studying a particular recurrence relation whose characteristic polynomial has complex roots exactly beyond the lower bound. Based on the optimal continuous algorithm combined with a scaling approach, we also provide a $1.772$-competitive randomized algorithm. We complement this by a randomized lower bound of $1.447$ via Yao's principle.

Citations (2)

Summary

We haven't generated a summary for this paper yet.