Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graded character sheaves, HOMFLY-PT homology, and Hilbert schemes of points on $\mathbb{C}^2$ (2305.01306v1)

Published 2 May 2023 in math.RT, math.AG, math.GT, and math.QA

Abstract: Using a geometric argument building on our new theory of graded sheaves, we compute the categorical trace and Drinfel'd center of the (graded) finite Hecke category $\mathsf{H}_W\mathsf{gr} = \mathsf{Ch}b(\mathsf{SBim}_W)$ in terms of the category of (graded) unipotent character sheaves, upgrading results of Ben-Zvi-Nadler and Bezrukavninov-Finkelberg-Ostrik. In type $A$, we relate the categorical trace to the category of $2$-periodic coherent sheaves on the Hilbert schemes $\mathsf{Hilb}_n(\mathbb{C}2)$ of points on $\mathbb{C}2$ (equivariant with respect to the natural $\mathbb{C}* \times \mathbb{C}*$ action), yielding a proof of a conjecture of Gorsky-Negut-Rasmussen which relates HOMFLY-PT link homology and the spaces of global sections of certain coherent sheaves on $\mathsf{Hilb}_n(\mathbb{C}2)$. As an important computational input, we also establish a conjecture of Gorsky-Hogancamp-Wedrich on the formality of the Hochschild homology of $\mathsf{H}_W\mathsf{gr}$.

Summary

We haven't generated a summary for this paper yet.