Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
84 tokens/sec
Gemini 2.5 Pro Premium
49 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
476 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Novel high-frequency gravitational waves detection with split cavity (2305.00877v2)

Published 1 May 2023 in gr-qc, astro-ph.CO, and hep-ph

Abstract: Gravitational waves can generate electromagnetic effects inside a strong electric or magnetic field within the Standard Model and general relativity. Here we propose using a quarterly split cavity and LC(inductor and capacitor)-resonance circuit to detect a high-frequency gravitational wave from 0.1 MHz to GHz. We perform a full 3D simulation of the cavity's signal for sensitivity estimate. Our sensitivity depends on the coherence time scale of the high-frequency gravitational wave sources and the volume size of the split cavity. We discuss the resonant measurement schemes for narrow-band gravitational wave sources and also a non-resonance scheme for broadband signals. For a meter-sized split cavity under a 14 Tesla magnetic field, the LC resonance enhanced sensitivity to the gravitational wave strain is expected to reach $h\sim 10{-20}$ around $10$ MHz.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
  2. S. Hild et al., Class. Quant. Grav. 28, 094013 (2011), arXiv:1012.0908 [gr-qc] .
  3. M. Punturo et al., Class. Quant. Grav. 27, 194002 (2010).
  4. B. P. Abbott et al. (LIGO Scientific), Class. Quant. Grav. 34, 044001 (2017), arXiv:1607.08697 [astro-ph.IM] .
  5. P. Amaro-Seoane et al. (LISA),   (2017), arXiv:1702.00786 [astro-ph.IM] .
  6. K. Yagi and N. Seto, Phys. Rev. D 83, 044011 (2011), [Erratum: Phys.Rev.D 95, 109901 (2017)], arXiv:1101.3940 [astro-ph.CO] .
  7. J. Harms et al. (LGWA), Astrophys. J. 910, 1 (2021), arXiv:2010.13726 [gr-qc] .
  8. J. van Heijningen et al.,   (2023), arXiv:2301.13685 [gr-qc] .
  9. L. Badurina et al., JCAP 05, 011 (2020), arXiv:1911.11755 [astro-ph.CO] .
  10. M. Abe et al., Quantum Sci. Technol. 6, 044003 (2021), arXiv:2104.02835 [physics.atom-ph] .
  11. Y. A. El-Neaj et al. (AEDGE), EPJ Quant. Technol. 7, 6 (2020), arXiv:1908.00802 [gr-qc] .
  12. Z. Arzoumanian et al. (NANOGrav), Astrophys. J. Lett. 905, L34 (2020), arXiv:2009.04496 [astro-ph.HE] .
  13. G. Janssen et al., PoS AASKA14, 037 (2015), arXiv:1501.00127 [astro-ph.IM] .
  14. K. Abazajian et al. (CMB-S4),   (2020), arXiv:2008.12619 [astro-ph.CO] .
  15. J. Anandan and R. Y. Chiao, Gen. Rel. Grav. 14, 515 (1982).
  16. M. B. Mensky and V. N. Rudenko, Grav. Cosmol. 15, 167 (2009).
  17. C. M. Caves, Phys. Lett. B 80, 323 (1979).
  18. R. Ballantini et al.,   (2005), arXiv:gr-qc/0502054 .
  19. A. M. Cruise, Class. Quant. Grav. 17, 2525 (2000).
  20. A. M. Cruise and R. M. J. Ingley, Class. Quant. Grav. 22, S479 (2005).
  21. A. M. Cruise and R. M. J. Ingley, Class. Quant. Grav. 23, 6185 (2006).
  22. K. Ackley et al., Publ. Astron. Soc. Austral. 37, e047 (2020), arXiv:2007.03128 [astro-ph.HE] .
  23. M. Bailes et al.,   (2019), arXiv:1912.06305 [astro-ph.IM] .
  24. T. Akutsu et al., Phys. Rev. Lett. 101, 101101 (2008), arXiv:0803.4094 [gr-qc] .
  25. A. S. Chou et al. (Holometer), Phys. Rev. D 95, 063002 (2017), arXiv:1611.05560 [astro-ph.IM] .
  26. A. Nishizawa et al., Phys. Rev. D 77, 022002 (2008), arXiv:0710.1944 [gr-qc] .
  27. M. Goryachev and M. E. Tobar, Phys. Rev. D 90, 102005 (2014), arXiv:1410.2334 [gr-qc] .
  28. O. D. Aguiar, Res. Astron. Astrophys. 11, 1 (2011), arXiv:1009.1138 [astro-ph.IM] .
  29. M. E. Gertsenshtein, Soviet Physics JETP 14, 84 (1962).
  30. A. Ito and J. Soda,   (2022), arXiv:2212.04094 [gr-qc] .
  31. N. Aggarwal et al., Living Rev. Rel. 24, 4 (2021), arXiv:2011.12414 [gr-qc] .
  32. V. Domcke and C. Garcia-Cely, Phys. Rev. Lett. 126, 021104 (2021), arXiv:2006.01161 [astro-ph.CO] .
  33. R. Howl and I. Fuentes,   (2021), arXiv:2103.02618 [quant-ph] .
  34. C. Bartram et al. (ADMX),   (2021), arXiv:2110.06096 [hep-ex] .
  35. R. Henning et al. (ABRACADABRA), in 13th Patras Workshop on Axions, WIMPs and WISPs (2018) pp. 28–31.
  36. C. P. Salemi (ABRACADABRA), in 54th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2019) pp. 229–234, arXiv:1905.06882 [hep-ex] .
  37. L. Brouwer et al.,   (2022), arXiv:2203.11246 [hep-ex] .
  38. M. Silva-Feaver et al., IEEE Trans. Appl. Supercond. 27, 1400204 (2017), arXiv:1610.09344 [astro-ph.IM] .
  39.  https://www.comsol.com/.
  40. P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983), [Erratum: Phys.Rev.Lett. 52, 695 (1984)].
  41. J. L. O.  et al., Snowmass 2021 Letter of Interest CF2, 217 (2020a).
  42. S. C.  et al., Snowmass 2021 Letter of Interest CF2, 218 (2020b).
  43. S. Sun and Y.-L. Zhang, Phys. Rev. D 104, 103009 (2021), arXiv:2003.10527 [hep-ph] .
  44. M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments (Oxford University Press, 2007).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.