Novel high-frequency gravitational waves detection with split cavity (2305.00877v2)
Abstract: Gravitational waves can generate electromagnetic effects inside a strong electric or magnetic field within the Standard Model and general relativity. Here we propose using a quarterly split cavity and LC(inductor and capacitor)-resonance circuit to detect a high-frequency gravitational wave from 0.1 MHz to GHz. We perform a full 3D simulation of the cavity's signal for sensitivity estimate. Our sensitivity depends on the coherence time scale of the high-frequency gravitational wave sources and the volume size of the split cavity. We discuss the resonant measurement schemes for narrow-band gravitational wave sources and also a non-resonance scheme for broadband signals. For a meter-sized split cavity under a 14 Tesla magnetic field, the LC resonance enhanced sensitivity to the gravitational wave strain is expected to reach $h\sim 10{-20}$ around $10$ MHz.
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
- S. Hild et al., Class. Quant. Grav. 28, 094013 (2011), arXiv:1012.0908 [gr-qc] .
- M. Punturo et al., Class. Quant. Grav. 27, 194002 (2010).
- B. P. Abbott et al. (LIGO Scientific), Class. Quant. Grav. 34, 044001 (2017), arXiv:1607.08697 [astro-ph.IM] .
- P. Amaro-Seoane et al. (LISA), (2017), arXiv:1702.00786 [astro-ph.IM] .
- K. Yagi and N. Seto, Phys. Rev. D 83, 044011 (2011), [Erratum: Phys.Rev.D 95, 109901 (2017)], arXiv:1101.3940 [astro-ph.CO] .
- J. Harms et al. (LGWA), Astrophys. J. 910, 1 (2021), arXiv:2010.13726 [gr-qc] .
- J. van Heijningen et al., (2023), arXiv:2301.13685 [gr-qc] .
- L. Badurina et al., JCAP 05, 011 (2020), arXiv:1911.11755 [astro-ph.CO] .
- M. Abe et al., Quantum Sci. Technol. 6, 044003 (2021), arXiv:2104.02835 [physics.atom-ph] .
- Y. A. El-Neaj et al. (AEDGE), EPJ Quant. Technol. 7, 6 (2020), arXiv:1908.00802 [gr-qc] .
- Z. Arzoumanian et al. (NANOGrav), Astrophys. J. Lett. 905, L34 (2020), arXiv:2009.04496 [astro-ph.HE] .
- G. Janssen et al., PoS AASKA14, 037 (2015), arXiv:1501.00127 [astro-ph.IM] .
- K. Abazajian et al. (CMB-S4), (2020), arXiv:2008.12619 [astro-ph.CO] .
- J. Anandan and R. Y. Chiao, Gen. Rel. Grav. 14, 515 (1982).
- M. B. Mensky and V. N. Rudenko, Grav. Cosmol. 15, 167 (2009).
- C. M. Caves, Phys. Lett. B 80, 323 (1979).
- R. Ballantini et al., (2005), arXiv:gr-qc/0502054 .
- A. M. Cruise, Class. Quant. Grav. 17, 2525 (2000).
- A. M. Cruise and R. M. J. Ingley, Class. Quant. Grav. 22, S479 (2005).
- A. M. Cruise and R. M. J. Ingley, Class. Quant. Grav. 23, 6185 (2006).
- K. Ackley et al., Publ. Astron. Soc. Austral. 37, e047 (2020), arXiv:2007.03128 [astro-ph.HE] .
- M. Bailes et al., (2019), arXiv:1912.06305 [astro-ph.IM] .
- T. Akutsu et al., Phys. Rev. Lett. 101, 101101 (2008), arXiv:0803.4094 [gr-qc] .
- A. S. Chou et al. (Holometer), Phys. Rev. D 95, 063002 (2017), arXiv:1611.05560 [astro-ph.IM] .
- A. Nishizawa et al., Phys. Rev. D 77, 022002 (2008), arXiv:0710.1944 [gr-qc] .
- M. Goryachev and M. E. Tobar, Phys. Rev. D 90, 102005 (2014), arXiv:1410.2334 [gr-qc] .
- O. D. Aguiar, Res. Astron. Astrophys. 11, 1 (2011), arXiv:1009.1138 [astro-ph.IM] .
- M. E. Gertsenshtein, Soviet Physics JETP 14, 84 (1962).
- A. Ito and J. Soda, (2022), arXiv:2212.04094 [gr-qc] .
- N. Aggarwal et al., Living Rev. Rel. 24, 4 (2021), arXiv:2011.12414 [gr-qc] .
- V. Domcke and C. Garcia-Cely, Phys. Rev. Lett. 126, 021104 (2021), arXiv:2006.01161 [astro-ph.CO] .
- R. Howl and I. Fuentes, (2021), arXiv:2103.02618 [quant-ph] .
- C. Bartram et al. (ADMX), (2021), arXiv:2110.06096 [hep-ex] .
- R. Henning et al. (ABRACADABRA), in 13th Patras Workshop on Axions, WIMPs and WISPs (2018) pp. 28–31.
- C. P. Salemi (ABRACADABRA), in 54th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2019) pp. 229–234, arXiv:1905.06882 [hep-ex] .
- L. Brouwer et al., (2022), arXiv:2203.11246 [hep-ex] .
- M. Silva-Feaver et al., IEEE Trans. Appl. Supercond. 27, 1400204 (2017), arXiv:1610.09344 [astro-ph.IM] .
- https://www.comsol.com/.
- P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983), [Erratum: Phys.Rev.Lett. 52, 695 (1984)].
- J. L. O. et al., Snowmass 2021 Letter of Interest CF2, 217 (2020a).
- S. C. et al., Snowmass 2021 Letter of Interest CF2, 218 (2020b).
- S. Sun and Y.-L. Zhang, Phys. Rev. D 104, 103009 (2021), arXiv:2003.10527 [hep-ph] .
- M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments (Oxford University Press, 2007).