Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient high-order Gradient-based Reconstruction for compressible flows (2305.00762v1)

Published 1 May 2023 in physics.flu-dyn, cs.NA, and math.NA

Abstract: This paper extends the gradient-based reconstruction approach of Chamarthi \cite{chamarthi2023gradient} to genuine high-order accuracy for inviscid test cases involving smooth flows. A seventh-order accurate scheme is derived using the same stencil as of the explicit fourth-order scheme proposed in Ref. \cite{chamarthi2023gradient}, which also has low dissipation properties. The proposed method is seventh-order accurate under the assumption that the variables at the \textit{cell centres are point values}. A problem-independent discontinuity detector is used to obtain high-order accuracy. Accordingly, primitive or conservative variable reconstruction is performed around regions of discontinuities, whereas smooth solution regions apply flux reconstruction. The proposed approach can still share the derivatives between the inviscid and viscous fluxes, which is the main idea behind the gradient-based reconstruction. Several standard benchmark test cases are presented. The proposed method is more efficient than the seventh-order weighted compact nonlinear scheme (WCNS) for the test cases considered in this paper.

Citations (3)

Summary

We haven't generated a summary for this paper yet.