Krylov construction and complexity for driven quantum systems (2305.00256v3)
Abstract: Krylov complexity is an important dynamical quantity with relevance to the study of operator growth and quantum chaos, and has recently been much studied for various time-independent systems. We initiate the study of K-complexity in time-dependent (driven) quantum systems. For periodic time-dependent (Floquet) systems, we develop a natural method for doing the Krylov construction and then define (state and operator) K-complexity for such systems. Focusing on kicked systems, in particular the quantum kicked rotor on a torus, we provide a detailed numerical study of the time dependence of Arnoldi coefficients as well as of the K-complexity with the system coupling constant interpolating between the weak and strong coupling regime. We also study the growth of the Krylov subspace dimension as a function of the system coupling constant.
- O. Bohigas, M.J. Giannoni and C. Schmit “Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws” In Phys. Rev. Lett. 52 American Physical Society, 1984, pp. 1–4 DOI: 10.1103/PhysRevLett.52.1
- Asher Peres “Stability of Quantum Motion in Chaotic and Regular Systems” In Phys. Rev. A 30, 1984, pp. 1610–1615 DOI: 10.1103/PhysRevA.30.1610
- A.Larkin Y. Ovchinnikov “Quasiclassical method in the theory of superconductivity” In Sov. Phys. JETP 28 (1969) 1200
- Juan Maldacena, Stephen H. Shenker and Douglas Stanford “A bound on chaos” In JHEP 08, 2016, pp. 106 DOI: 10.1007/JHEP08(2016)106
- “A Universal Operator Growth Hypothesis” In Phys. Rev. X 9.4, 2019, pp. 041017 DOI: 10.1103/PhysRevX.9.041017
- “Quantum chaos and the complexity of spread of states” In Phys. Rev. D 106.4, 2022, pp. 046007 DOI: 10.1103/PhysRevD.106.046007
- “A universal approach to Krylov State and Operator complexities”, 2022 DOI: 10.48550/arXiv.2212.10583
- “K-complexity from integrability to chaos”, 2022 DOI: 10.48550/arXiv.2207.07701
- “Operator complexity: a journey to the edge of Krylov space” In JHEP 06, 2021, pp. 062 DOI: 10.1007/JHEP06(2021)062
- “Krylov localization and suppression of complexity” In JHEP 03, 2022, pp. 211 DOI: 10.1007/JHEP03(2022)211
- Arpan Bhattacharyya, Debodirna Ghosh and Poulami Nandi “Operator growth and Krylov Complexity in Bose-Hubbard Model”, 2023 arXiv:2306.05542 [hep-th]
- “Krylov complexity in conformal field theory” In Phys. Rev. D 104.8, 2021, pp. L081702 DOI: 10.1103/PhysRevD.104.L081702
- Alexander Avdoshkin, Anatoly Dymarsky and Michael Smolkin “Krylov complexity in quantum field theory, and beyond”, 2022 arXiv:2212.14429 [hep-th]
- “Operator growth in 2d CFT” [Erratum: JHEP 09, 113 (2022)] In JHEP 12, 2021, pp. 188 DOI: 10.1007/JHEP12(2021)188
- Arnab Kundu, Vinay Malvimat and Ritam Sinha “State Dependence of Krylov Complexity in 2d2𝑑2d2 italic_d CFTs”, 2023 DOI: 10.48550/arXiv.2303.03426
- Felix M. Izrailev “Simple models of quantum chaos: Spectrum and eigenfunctions” In Physics Reports 196.5, 1990, pp. 299–392 DOI: https://doi.org/10.1016/0370-1573(90)90067-C
- Naoto Tsuji “Floquet States”, 2023 DOI: 10.48550/arXiv.2301.12676
- “Floquet engineering of quantum materials” In Annual Review of Condensed Matter Physics 10 Annual Reviews, 2019, pp. 387–408 DOI: https://doi.org/10.1146/annurev-conmatphys-031218-013423
- “Topological characterization of periodically driven quantum systems” In Physical Review B 82.23 APS, 2010, pp. 235114 DOI: https://doi.org/10.1103/PhysRevB.82.235114
- “Floquet dynamical quantum phase transitions” In Physical Review B 100.8 APS, 2019, pp. 085308 DOI: https://doi.org/10.1103/PhysRevB.100.085308
- “Colloquium: Quantum and classical discrete time crystals” In Rev. Mod. Phys. 95.3, 2023, pp. 031001 DOI: 10.1103/RevModPhys.95.031001
- “Many-body energy localization transition in periodically driven systems” In Annals of Physics 333 Elsevier, 2013, pp. 19–33 DOI: https://doi.org/10.1016/j.aop.2013.02.011
- Achilleas Lazarides, Arnab Das and Roderich Moessner “Equilibrium states of generic quantum systems subject to periodic driving” In Physical Review E 90.1 APS, 2014, pp. 012110 DOI: https://doi.org/10.1103/PhysRevE.90.012110
- “Many-body localization in periodically driven systems” In Physical review letters 114.14 APS, 2015, pp. 140401 DOI: https://doi.org/10.1103/PhysRevLett.114.140401
- “A rigorous theory of many-body prethermalization for periodically driven and closed quantum systems” In Communications in Mathematical Physics 354 Springer, 2017, pp. 809–827 DOI: https://doi.org/10.1007/s00220-017-2930-x
- “Topology and broken symmetry in Floquet systems” In Annual Review of Condensed Matter Physics 11 Annual Reviews, 2020, pp. 345–368 DOI: https://doi.org/10.1146/annurev-conmatphys-031218-013721
- “Phase structure of driven quantum systems” In Physical review letters 116.25 APS, 2016, pp. 250401 DOI: https://doi.org/10.1103/PhysRevLett.116.250401
- Dominic V Else, Bela Bauer and Chetan Nayak “Floquet time crystals” In Physical review letters 117.9 APS, 2016, pp. 090402 DOI: https://doi.org/10.1103/PhysRevLett.117.090402
- Pawel Caputa, Javier M. Magan and Dimitrios Patramanis “Geometry of Krylov complexity” In Phys. Rev. Res. 4.1, 2022, pp. 013041 DOI: 10.1103/PhysRevResearch.4.013041
- “On The Evolution Of Operator Complexity Beyond Scrambling” In JHEP 10, 2019, pp. 264 DOI: 10.1007/JHEP10(2019)264
- “Krylov complexity in saddle-dominated scrambling” In JHEP 05, 2022, pp. 174 DOI: 10.1007/JHEP05(2022)174
- Tianrui Xu, Thomas Scaffidi and Xiangyu Cao “Does scrambling equal chaos?” In Phys. Rev. Lett. 124.14, 2020, pp. 140602 DOI: 10.1103/PhysRevLett.124.140602
- Neil Dowling, Pavel Kos and Kavan Modi “Scrambling is Necessary but Not Sufficient for Chaos”, 2023 DOI: 10.48550/arXiv.2304.07319
- Daniel J. Yates and Aditi Mitra “Strong and almost strong modes of Floquet spin chains in Krylov subspaces” In Phys. Rev. B 104.19, 2021, pp. 195121 DOI: 10.1103/PhysRevB.104.195121
- “Operator growth and Krylov construction in dissipative open quantum systems” In JHEP 12, 2022, pp. 081 DOI: 10.1007/JHEP12(2022)081
- “Operator growth in open quantum systems: lessons from the dissipative SYK” In JHEP 03, 2023, pp. 054 DOI: 10.1007/JHEP03(2023)054
- “On Krylov complexity in open systems: an approach via bi-Lanczos algorithm”, 2023 DOI: 10.48550/arXiv.2112.04722
- “Operator spreading in quantum maps” In Phys. Rev. B 99.9, 2019, pp. 094312 DOI: 10.1103/PhysRevB.99.094312
- “Chaos signatures in the short and long time behavior of the out-of-time ordered correlator” In Phys. Rev. Lett. 121.21, 2018, pp. 210601 DOI: 10.1103/PhysRevLett.121.210601
- Arul Lakshminarayan “Out-of-time-ordered correlator in the quantum bakers map and truncated unitary matrices” In Phys. Rev. E 99.1, 2019, pp. 012201 DOI: 10.1103/PhysRevE.99.012201
- Arul Lakshminarayan “Classical and quantum Chaos plus RMT and some applications” In Bangalore Summer School on Statistical Physics ICTS, 2022 URL: https://www.icts.res.in/sites/default/files/bssp2018-Arul-Lakshminarayan-slides.pdf
- Julian Schwinger “Unitary Operator Bases” In Proc.Nat.Acad.Sci. USA 46.4 National Academy of Sciences, 1960, pp. 570–579 URL: http://www.jstor.org/stable/70873
- “Quantum chaos as delocalization in Krylov space” In Phys. Rev. B 102.8, 2020, pp. 085137 DOI: 10.1103/PhysRevB.102.085137
- “Gauging classical and quantum integrability through out-of-time ordered correlators” In Phys. Rev. E 100.4, 2019, pp. 042201 DOI: 10.1103/PhysRevE.100.042201
- Ignacio Garcı́a-Mata, Rodolfo A. Jalabert and Diego A. Wisniacki “Out-of-time-order correlators and quantum chaos”, 2022 DOI: 10.48550/arXiv.1703.09435
- B.N. Parlett “The Symmetric Eigenvalue Problem”, Classics in Applied Mathematics Society for IndustrialApplied Mathematics, 1998 URL: https://books.google.co.in/books?id=mWin91cLndsC
- “Time evolution of spread complexity in quenched Lipkin-Meshkov-Glick model”, 2022 arXiv:2208.10520 [hep-th]
- “Time evolution of spread complexity and statistics of work done in quantum quenches”, 2023 arXiv:2304.09636 [quant-ph]
- Mamta Gautam, Nitesh Jaiswal and Ankit Gill “Spread Complexity in free fermion models”, 2023 arXiv:2305.12115 [quant-ph]
- Daniel J. Yates, Alexander G. Abanov and Aditi Mitra “Long-lived period-doubled edge modes of interacting and disorder-free Floquet spin chains” In Commun. Phys. 5, 2022, pp. 43 DOI: 10.1038/s42005-022-00818-1