Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Krylov construction and complexity for driven quantum systems (2305.00256v3)

Published 29 Apr 2023 in quant-ph and hep-th

Abstract: Krylov complexity is an important dynamical quantity with relevance to the study of operator growth and quantum chaos, and has recently been much studied for various time-independent systems. We initiate the study of K-complexity in time-dependent (driven) quantum systems. For periodic time-dependent (Floquet) systems, we develop a natural method for doing the Krylov construction and then define (state and operator) K-complexity for such systems. Focusing on kicked systems, in particular the quantum kicked rotor on a torus, we provide a detailed numerical study of the time dependence of Arnoldi coefficients as well as of the K-complexity with the system coupling constant interpolating between the weak and strong coupling regime. We also study the growth of the Krylov subspace dimension as a function of the system coupling constant.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. O. Bohigas, M.J. Giannoni and C. Schmit “Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws” In Phys. Rev. Lett. 52 American Physical Society, 1984, pp. 1–4 DOI: 10.1103/PhysRevLett.52.1
  2. Asher Peres “Stability of Quantum Motion in Chaotic and Regular Systems” In Phys. Rev. A 30, 1984, pp. 1610–1615 DOI: 10.1103/PhysRevA.30.1610
  3. A.Larkin Y. Ovchinnikov “Quasiclassical method in the theory of superconductivity” In Sov. Phys. JETP 28 (1969) 1200
  4. Juan Maldacena, Stephen H. Shenker and Douglas Stanford “A bound on chaos” In JHEP 08, 2016, pp. 106 DOI: 10.1007/JHEP08(2016)106
  5. “A Universal Operator Growth Hypothesis” In Phys. Rev. X 9.4, 2019, pp. 041017 DOI: 10.1103/PhysRevX.9.041017
  6. “Quantum chaos and the complexity of spread of states” In Phys. Rev. D 106.4, 2022, pp. 046007 DOI: 10.1103/PhysRevD.106.046007
  7. “A universal approach to Krylov State and Operator complexities”, 2022 DOI: 10.48550/arXiv.2212.10583
  8. “K-complexity from integrability to chaos”, 2022 DOI: 10.48550/arXiv.2207.07701
  9. “Operator complexity: a journey to the edge of Krylov space” In JHEP 06, 2021, pp. 062 DOI: 10.1007/JHEP06(2021)062
  10. “Krylov localization and suppression of complexity” In JHEP 03, 2022, pp. 211 DOI: 10.1007/JHEP03(2022)211
  11. Arpan Bhattacharyya, Debodirna Ghosh and Poulami Nandi “Operator growth and Krylov Complexity in Bose-Hubbard Model”, 2023 arXiv:2306.05542 [hep-th]
  12. “Krylov complexity in conformal field theory” In Phys. Rev. D 104.8, 2021, pp. L081702 DOI: 10.1103/PhysRevD.104.L081702
  13. Alexander Avdoshkin, Anatoly Dymarsky and Michael Smolkin “Krylov complexity in quantum field theory, and beyond”, 2022 arXiv:2212.14429 [hep-th]
  14. “Operator growth in 2d CFT” [Erratum: JHEP 09, 113 (2022)] In JHEP 12, 2021, pp. 188 DOI: 10.1007/JHEP12(2021)188
  15. Arnab Kundu, Vinay Malvimat and Ritam Sinha “State Dependence of Krylov Complexity in 2⁢d2𝑑2d2 italic_d CFTs”, 2023 DOI: 10.48550/arXiv.2303.03426
  16. Felix M. Izrailev “Simple models of quantum chaos: Spectrum and eigenfunctions” In Physics Reports 196.5, 1990, pp. 299–392 DOI: https://doi.org/10.1016/0370-1573(90)90067-C
  17. Naoto Tsuji “Floquet States”, 2023 DOI: 10.48550/arXiv.2301.12676
  18. “Floquet engineering of quantum materials” In Annual Review of Condensed Matter Physics 10 Annual Reviews, 2019, pp. 387–408 DOI: https://doi.org/10.1146/annurev-conmatphys-031218-013423
  19. “Topological characterization of periodically driven quantum systems” In Physical Review B 82.23 APS, 2010, pp. 235114 DOI: https://doi.org/10.1103/PhysRevB.82.235114
  20. “Floquet dynamical quantum phase transitions” In Physical Review B 100.8 APS, 2019, pp. 085308 DOI: https://doi.org/10.1103/PhysRevB.100.085308
  21. “Colloquium: Quantum and classical discrete time crystals” In Rev. Mod. Phys. 95.3, 2023, pp. 031001 DOI: 10.1103/RevModPhys.95.031001
  22. “Many-body energy localization transition in periodically driven systems” In Annals of Physics 333 Elsevier, 2013, pp. 19–33 DOI: https://doi.org/10.1016/j.aop.2013.02.011
  23. Achilleas Lazarides, Arnab Das and Roderich Moessner “Equilibrium states of generic quantum systems subject to periodic driving” In Physical Review E 90.1 APS, 2014, pp. 012110 DOI: https://doi.org/10.1103/PhysRevE.90.012110
  24. “Many-body localization in periodically driven systems” In Physical review letters 114.14 APS, 2015, pp. 140401 DOI: https://doi.org/10.1103/PhysRevLett.114.140401
  25. “A rigorous theory of many-body prethermalization for periodically driven and closed quantum systems” In Communications in Mathematical Physics 354 Springer, 2017, pp. 809–827 DOI: https://doi.org/10.1007/s00220-017-2930-x
  26. “Topology and broken symmetry in Floquet systems” In Annual Review of Condensed Matter Physics 11 Annual Reviews, 2020, pp. 345–368 DOI: https://doi.org/10.1146/annurev-conmatphys-031218-013721
  27. “Phase structure of driven quantum systems” In Physical review letters 116.25 APS, 2016, pp. 250401 DOI: https://doi.org/10.1103/PhysRevLett.116.250401
  28. Dominic V Else, Bela Bauer and Chetan Nayak “Floquet time crystals” In Physical review letters 117.9 APS, 2016, pp. 090402 DOI: https://doi.org/10.1103/PhysRevLett.117.090402
  29. Pawel Caputa, Javier M. Magan and Dimitrios Patramanis “Geometry of Krylov complexity” In Phys. Rev. Res. 4.1, 2022, pp. 013041 DOI: 10.1103/PhysRevResearch.4.013041
  30. “On The Evolution Of Operator Complexity Beyond Scrambling” In JHEP 10, 2019, pp. 264 DOI: 10.1007/JHEP10(2019)264
  31. “Krylov complexity in saddle-dominated scrambling” In JHEP 05, 2022, pp. 174 DOI: 10.1007/JHEP05(2022)174
  32. Tianrui Xu, Thomas Scaffidi and Xiangyu Cao “Does scrambling equal chaos?” In Phys. Rev. Lett. 124.14, 2020, pp. 140602 DOI: 10.1103/PhysRevLett.124.140602
  33. Neil Dowling, Pavel Kos and Kavan Modi “Scrambling is Necessary but Not Sufficient for Chaos”, 2023 DOI: 10.48550/arXiv.2304.07319
  34. Daniel J. Yates and Aditi Mitra “Strong and almost strong modes of Floquet spin chains in Krylov subspaces” In Phys. Rev. B 104.19, 2021, pp. 195121 DOI: 10.1103/PhysRevB.104.195121
  35. “Operator growth and Krylov construction in dissipative open quantum systems” In JHEP 12, 2022, pp. 081 DOI: 10.1007/JHEP12(2022)081
  36. “Operator growth in open quantum systems: lessons from the dissipative SYK” In JHEP 03, 2023, pp. 054 DOI: 10.1007/JHEP03(2023)054
  37. “On Krylov complexity in open systems: an approach via bi-Lanczos algorithm”, 2023 DOI: 10.48550/arXiv.2112.04722
  38. “Operator spreading in quantum maps” In Phys. Rev. B 99.9, 2019, pp. 094312 DOI: 10.1103/PhysRevB.99.094312
  39. “Chaos signatures in the short and long time behavior of the out-of-time ordered correlator” In Phys. Rev. Lett. 121.21, 2018, pp. 210601 DOI: 10.1103/PhysRevLett.121.210601
  40. Arul Lakshminarayan “Out-of-time-ordered correlator in the quantum bakers map and truncated unitary matrices” In Phys. Rev. E 99.1, 2019, pp. 012201 DOI: 10.1103/PhysRevE.99.012201
  41. Arul Lakshminarayan “Classical and quantum Chaos plus RMT and some applications” In Bangalore Summer School on Statistical Physics ICTS, 2022 URL: https://www.icts.res.in/sites/default/files/bssp2018-Arul-Lakshminarayan-slides.pdf
  42. Julian Schwinger “Unitary Operator Bases” In Proc.Nat.Acad.Sci. USA 46.4 National Academy of Sciences, 1960, pp. 570–579 URL: http://www.jstor.org/stable/70873
  43. “Quantum chaos as delocalization in Krylov space” In Phys. Rev. B 102.8, 2020, pp. 085137 DOI: 10.1103/PhysRevB.102.085137
  44. “Gauging classical and quantum integrability through out-of-time ordered correlators” In Phys. Rev. E 100.4, 2019, pp. 042201 DOI: 10.1103/PhysRevE.100.042201
  45. Ignacio Garcı́a-Mata, Rodolfo A. Jalabert and Diego A. Wisniacki “Out-of-time-order correlators and quantum chaos”, 2022 DOI: 10.48550/arXiv.1703.09435
  46. B.N. Parlett “The Symmetric Eigenvalue Problem”, Classics in Applied Mathematics Society for IndustrialApplied Mathematics, 1998 URL: https://books.google.co.in/books?id=mWin91cLndsC
  47. “Time evolution of spread complexity in quenched Lipkin-Meshkov-Glick model”, 2022 arXiv:2208.10520 [hep-th]
  48. “Time evolution of spread complexity and statistics of work done in quantum quenches”, 2023 arXiv:2304.09636 [quant-ph]
  49. Mamta Gautam, Nitesh Jaiswal and Ankit Gill “Spread Complexity in free fermion models”, 2023 arXiv:2305.12115 [quant-ph]
  50. Daniel J. Yates, Alexander G. Abanov and Aditi Mitra “Long-lived period-doubled edge modes of interacting and disorder-free Floquet spin chains” In Commun. Phys. 5, 2022, pp. 43 DOI: 10.1038/s42005-022-00818-1
Citations (20)

Summary

We haven't generated a summary for this paper yet.