Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Direct Sampling-Based Deep Learning Approach for Inverse Medium Scattering Problems (2305.00250v1)

Published 29 Apr 2023 in eess.SP, cs.LG, cs.NA, eess.IV, and math.NA

Abstract: In this work, we focus on the inverse medium scattering problem (IMSP), which aims to recover unknown scatterers based on measured scattered data. Motivated by the efficient direct sampling method (DSM) introduced in [23], we propose a novel direct sampling-based deep learning approach (DSM-DL)for reconstructing inhomogeneous scatterers. In particular, we use the U-Net neural network to learn the relation between the index functions and the true contrasts. Our proposed DSM-DL is computationally efficient, robust to noise, easy to implement, and able to naturally incorporate multiple measured data to achieve high-quality reconstructions. Some representative tests are carried out with varying numbers of incident waves and different noise levels to evaluate the performance of the proposed method. The results demonstrate the promising benefits of combining deep learning techniques with the DSM for IMSP.

Citations (8)

Summary

We haven't generated a summary for this paper yet.