Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representation Matters for Mastering Chess: Improved Feature Representation in AlphaZero Outperforms Switching to Transformers (2304.14918v2)

Published 28 Apr 2023 in cs.AI

Abstract: While transformers have gained recognition as a versatile tool for AI, an unexplored challenge arises in the context of chess - a classical AI benchmark. Here, incorporating Vision Transformers (ViTs) into AlphaZero is insufficient for chess mastery, mainly due to ViTs' computational limitations. The attempt to optimize their efficiency by combining MobileNet and NextViT outperformed AlphaZero by about 30 Elo. However, we propose a practical improvement that involves a simple change in the input representation and value loss functions. As a result, we achieve a significant performance boost of up to 180 Elo points beyond what is currently achievable with AlphaZero in chess. In addition to these improvements, our experimental results using the Integrated Gradient technique confirm the effectiveness of the newly introduced features.

Citations (2)

Summary

We haven't generated a summary for this paper yet.