SocNavGym: A Reinforcement Learning Gym for Social Navigation (2304.14102v2)
Abstract: It is essential for autonomous robots to be socially compliant while navigating in human-populated environments. Machine Learning and, especially, Deep Reinforcement Learning have recently gained considerable traction in the field of Social Navigation. This can be partially attributed to the resulting policies not being bound by human limitations in terms of code complexity or the number of variables that are handled. Unfortunately, the lack of safety guarantees and the large data requirements by DRL algorithms make learning in the real world unfeasible. To bridge this gap, simulation environments are frequently used. We propose SocNavGym, an advanced simulation environment for social navigation that can generate a wide variety of social navigation scenarios and facilitates the development of intelligent social agents. SocNavGym is light-weight, fast, easy-to-use, and can be effortlessly configured to generate different types of social navigation scenarios. It can also be configured to work with different hand-crafted and data-driven social reward signals and to yield a variety of evaluation metrics to benchmark agents' performance. Further, we also provide a case study where a Dueling-DQN agent is trained to learn social-navigation policies using SocNavGym. The results provides evidence that SocNavGym can be used to train an agent from scratch to navigate in simple as well as complex social scenarios. Our experiments also show that the agents trained using the data-driven reward function displays more advanced social compliance in comparison to the heuristic-based reward function.
- C. Mavrogiannis, F. Baldini, A. Wang, D. Zhao, P. Trautman, A. Steinfeld, and J. Oh, “Core Challenges of Social Robot Navigation: A Survey,” ACM Transactions on Human-Robot Interaction, vol. abs/2103.05668, p. 3583741, Feb. 2023. [Online]. Available: https://dl.acm.org/doi/10.1145/3583741
- S. Liu, P. Chang, Z. Huang, N. Chakraborty, K. Hong, W. Liang, D. L. McPherson, J. Geng, and K. Driggs-Campbell, “Intention aware robot crowd navigation with attention-based interaction graph,” 2022.
- C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational Graph Learning for Crowd Navigation,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA: IEEE, Oct. 2020, pp. 10 007–10 013.
- A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social LSTM: Human Trajectory Prediction in Crowded Spaces,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, June 2016, pp. 961–971.
- A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, June 2018, pp. 2255–2264.
- Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, “STGAT: Modeling Spatial-Temporal Interactions for Human Trajectory Prediction,” in IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE, Oct. 2019, pp. 6271–6280.
- S. Eiffert, H. Kong, N. Pirmarzdashti, and S. Sukkarieh, “Path planning in dynamic environments using generative rnns and monte carlo tree search,” CoRR, vol. abs/2001.11597, 2020. [Online]. Available: https://arxiv.org/abs/2001.11597
- P. Bachiller, D. Rodriguez-Criado, R. R. Jorvekar, P. Bustos, D. R. Faria, and L. J. Manso, “A graph neural network to model disruption in human-aware robot navigation,” Multimedia Tools and Applications, vol. 81, no. 3, pp. 3277–3295, 2022.
- C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-Robot Interaction: Crowd-Aware Robot Navigation With Attention-Based Deep Reinforcement Learning,” in International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada: IEEE, May 2019, pp. 6015–6022. [Online]. Available: https://ieeexplore.ieee.org/document/8794134/
- Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion planning with deep reinforcement learning,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC: IEEE, Sept. 2017, pp. 1343–1350. [Online]. Available: http://ieeexplore.ieee.org/document/8202312/
- Z. Zhou, P. Zhu, Z. Zeng, J. Xiao, H. Lu, and Z. Zhou, “Robot navigation in a crowd by integrating deep reinforcement learning and online planning,” Applied Intelligence, vol. 52, no. 13, pp. 15 600–15 616, Oct. 2022. [Online]. Available: https://link.springer.com/10.1007/s10489-022-03191-2
- L. Qin, Z. Huang, C. Zhang, H. Guo, M. Ang, and D. Rus, “Deep Imitation Learning for Autonomous Navigation in Dynamic Pedestrian Environments,” in IEEE International Conference on Robotics and Automation (ICRA). Xi’an, China: IEEE, May 2021, pp. 4108–4115. [Online]. Available: https://ieeexplore.ieee.org/document/9561220/
- J. P. de Vicente and A. Soto, “Deepsocnav: Social navigation by imitating human behaviors,” CoRR, vol. abs/2107.09170, 2021. [Online]. Available: https://arxiv.org/abs/2107.09170
- K. Narayanan, L. Posada, F. Hoffmann, and T. Bertram, “Acquisition of Behavioral Dynamics for Vision Based Mobile Robot Navigation from Demonstrations,” IFAC Proceedings Volumes, vol. 46, no. 5, pp. 37–44, 2013. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1474667015361942
- H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially compliant mobile robot navigation via inverse reinforcement learning,” The International Journal of Robotics Research, vol. 35, no. 11, pp. 1289–1307, 2016. [Online]. Available: https://doi.org/10.1177/0278364915619772
- M. Fahad, Z. Chen, and Y. Guo, “Learning How Pedestrians Navigate: A Deep Inverse Reinforcement Learning Approach,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, Oct. 2018, pp. 819–826. [Online]. Available: https://ieeexplore.ieee.org/document/8593438/
- O. Saha and P. Dasgupta, “Improved reward estimation for efficient robot navigation using inverse reinforcement learning,” in NASA/ESA Conference on Adaptive Hardware and Systems (AHS). Pasadena, CA, USA: IEEE, July 2017, pp. 245–252. [Online]. Available: http://ieeexplore.ieee.org/document/8046385/
- D. Rodriguez-Criado, P. Bachiller, and L. J. Manso, “Generation of human-aware navigation maps using graph neural networks,” in Artificial Intelligence XXXVIII, M. Bramer and R. Ellis, Eds. Cham: Springer International Publishing, 2021, pp. 19–32.
- I. Mordatch and P. Abbeel, “Emergence of Grounded Compositional Language in Multi-Agent Populations,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/11492
- L. J. Manso, P. Nuñez, L. V. Calderita, D. R. Faria, and P. Bachiller, “SocNav1: A Dataset to Benchmark and Learn Social Navigation Conventions,” Data, vol. 5, no. 1, p. 7, Jan. 2020. [Online]. Available: https://www.mdpi.com/2306-5729/5/1/7
- R. Baghel, A. Kapoor, P. Bachiller, R. R. Jorvekar, D. Rodriguez-Criado, and L. J. Manso, “A toolkit to generate social navigation datasets,” CoRR, vol. abs/2009.05345, 2020. [Online]. Available: https://arxiv.org/abs/2009.05345
- Z. Wang, N. de Freitas, and M. Lanctot, “Dueling network architectures for deep reinforcement learning,” CoRR, vol. abs/1511.06581, 2015. [Online]. Available: http://arxiv.org/abs/1511.06581
- A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and V. Koltun, “CARLA: an open urban driving simulator,” CoRR, vol. abs/1711.03938, 2017. [Online]. Available: http://arxiv.org/abs/1711.03938
- M. Campanella, S. Hoogendoorn, and W. Daamen, “The nomad model: Theory, developments and applications,” Transportation Research Procedia, vol. 2, pp. 462–467, 2014, conference on Pedestrian and Evacuation Dynamics 2014.
- S. Curtis, A. Best, and D. Manocha, “Menge: A modular framework for simulating crowd movement,” Collective Dynamics, vol. 1, 03 2016.
- N. Tsoi, A. Xiang, P. Yu, S. S. Sohn, G. Schwartz, S. Ramesh, M. Hussein, A. W. Gupta, M. Kapadia, and M. Vázquez, “Sean 2.0: Formalizing and generating social situations for robot navigation,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 047–11 054, 2022.
- J. Holtz and J. Biswas, “SocialGym: A Framework for Benchmarking Social Robot Navigation,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Kyoto, Japan: IEEE, Oct. 2022, pp. 11 246–11 252. [Online]. Available: https://ieeexplore.ieee.org/document/9982021/
- J. K. Haas, “A history of the unity game engine,” Worcester Polytechnic Institute, Tech. Rep., 2014.
- M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,” in IEEE International Conference on Robotics and Automation, vol. 3, 01 2009.
- A. Francis, C. Perez-D’Arpino, C. Li, F. Xia, A. Alahi, R. Alami, A. Bera, A. Biswas, J. Biswas, R. Chandra, H.-T. L. Chiang, M. Everett, S. Ha11, J. Hart, J. P. How, H. Karnan, T.-W. E. Lee, L. J. Manso, R. Mirksy, S. Pirk, P. T. Singamaneni, P. Stone, A. V. Taylor, P. Trautman, N. Tsoi, M. Vazquez, X. Xiao, P. Xu, N. Yokoyama, A. Toshev, and R. Martín-Martín, “Principles and guidelines for evaluating social robot navigation algorithms,” arXiv preprint arXiv:2306.16740, 2023.
- J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time multi-agent navigation,” in IEEE International Conference on Robotics and Automation. Pasadena, California, USA: IEEE, 2008, pp. 1928–1935.
- D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Physical Review E, vol. 51, no. 5, pp. 4282–4286, May 1995. [Online]. Available: https://doi.org/10.1103physreve.51.4282
- S. Liu, P. Chang, W. Liang, N. Chakraborty, and K. Driggs-Campbell, “Decentralized structural-rnn for robot crowd navigation with deep reinforcement learning,” in IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 3517–3524.
- E. T. Hall, R. L. Birdwhistell, B. Bock, P. Bohannan, A. R. Diebold Jr, M. Durbin, M. S. Edmonson, J. Fischer, D. Hymes, S. T. Kimball, et al., “Proxemics [and comments and replies],” Current anthropology, vol. 9, no. 2/3, pp. 83–108, 1968.
- Aditya Kapoor (12 papers)
- Sushant Swamy (2 papers)
- Luis Manso (2 papers)
- Pilar Bachiller (9 papers)