Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Correlation Functions in $\textrm{T}\bar{\textrm{T}}$-deformed Conformal Field Theories (2304.14091v3)

Published 27 Apr 2023 in hep-th

Abstract: We study the correlation functions of local operators in unitary $\textrm{T}\bar{\textrm{T}}$-deformed field theories, using their formulation in terms of Jackiw-Teitelboim gravity. The position of the operators is defined using the dynamical coordinates of this formalism. We focus on the two-point correlation function in momentum space, when the undeformed theory is a conformal field theory. In particular, we compute the large momentum behavior of the correlation functions, which manifests the non-locality of the $\textrm{T}\bar{\textrm{T}}$-deformed theory. The correlation function has UV-divergences, which are regulated by a point-splitting regulator. Renormalizing the operators requires multiplicative factors depending on the momentum, unlike the behavior in local QFTs. The large momentum limit of the correlator, which is the main result of this paper, is proportional to $|q|{-\frac{q2}{\pi|\Lambda|}}$, where $q$ is the momentum and $1/|\Lambda|$ is the deformation parameter. Interestingly, the exponent here has a different sign from earlier results obtained by resummation of small $q$ computations. The decay at large momentum implies that the operators behave non-locally at the scale set by the deformation parameter.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories,” Nucl. Phys. B 915 (2017), 363-383 [arXiv:1608.05499 [hep-th]].
  2. A. Cavaglià, S. Negro, I. M. Szécsényi and R. Tateo, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories,” JHEP 10 (2016), 112 [arXiv:1608.05534 [hep-th]].
  3. Y. Jiang, “A pedagogical review on solvable irrelevant deformations of 2D quantum field theory,” Commun. Theor. Phys. 73 (2021) no.5, 057201 [arXiv:1904.13376 [hep-th]].
  4. P. Kraus, J. Liu and D. Marolf, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus the T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 07 (2018), 027 [arXiv:1801.02714 [hep-th]].
  5. G. Giribet, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformations, AdS/CFT and correlation functions,” JHEP 02 (2018), 114 [arXiv:1711.02716 [hep-th]].
  6. O. Aharony and T. Vaknin, “The TT* deformation at large central charge,” JHEP 05 (2018), 166 [arXiv:1803.00100 [hep-th]].
  7. S. He, “Note on higher-point correlation functions of the T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG or J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG deformed CFTs,” [arXiv:2012.06202 [hep-th]].
  8. S. He and H. Shu, “Correlation functions, entanglement and chaos in the T⁢T¯/J⁢T¯𝑇¯𝑇𝐽¯𝑇T\overline{T}/J\overline{T}italic_T over¯ start_ARG italic_T end_ARG / italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” JHEP 02 (2020), 088 [arXiv:1907.12603 [hep-th]].
  9. S. He, J. R. Sun and Y. Sun, “The correlation function of (1,1) and (2,2) supersymmetric theories with T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 04 (2020), 100 [arXiv:1912.11461 [hep-th]].
  10. S. Ebert, H. Y. Sun and Z. Sun, “TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG deformation in SCFTs and integrable supersymmetric theories,” JHEP 09, 082 (2021) [arXiv:2011.07618 [hep-th]].
  11. S. He and Y. Z. Li, “Genus two correlation functions in CFTs with T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” Sci. China Phys. Mech. Astron. 66, no.5, 251011 (2023) [arXiv:2202.04810 [hep-th]].
  12. S. He and Y. Sun, “Correlation functions of CFTs on a torus with a T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” Phys. Rev. D 102, no.2, 026023 (2020) [arXiv:2004.07486 [hep-th]].
  13. V. Rosenhaus and M. Smolkin, “Integrability and renormalization under T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG,” Phys. Rev. D 102 (2020) no.6, 065009 [arXiv:1909.02640 [hep-th]].
  14. Y. Li and Y. Zhou, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT in the large central charge sector: correlators of energy-momentum tensor,” JHEP 12 (2020), 168 [arXiv:2005.01693 [hep-th]].
  15. S. Hirano, T. Nakajima and M. Shigemori, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG Deformation of Stress-Tensor Correlators from Random Geometry,” [arXiv:2012.03972 [hep-th]].
  16. S. He, Y. Li, Y. Z. Li and Y. Zhang, “Holographic torus correlators of stress tensor in A⁢d⁢S3/C⁢F⁢T2𝐴𝑑subscript𝑆3𝐶𝐹subscript𝑇2AdS_{3}/CFT_{2}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT / italic_C italic_F italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” [arXiv:2303.13280 [hep-th]].
  17. J. Cardy, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation of correlation functions,” JHEP 12, 160 (2019) [arXiv:1907.03394 [hep-th]].
  18. S. Hirano and M. Shigemori, “Random boundary geometry and gravity dual of T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 11, 108 (2020) [arXiv:2003.06300 [hep-th]].
  19. S. Dubovsky, V. Gorbenko and M. Mirbabayi, “Asymptotic fragility, near AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT holography and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 09 (2017), 136 [arXiv:1706.06604 [hep-th]].
  20. S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG partition function from topological gravity,” JHEP 09 (2018), 158 [arXiv:1805.07386 [hep-th]].
  21. W. Cui, H. Shu, W. Song and J. Wang, “Correlation Functions in the TsT/T⁢T¯𝑇¯𝑇T{\bar{T}}italic_T over¯ start_ARG italic_T end_ARG Correspondence,” [arXiv:2304.04684 [hep-th]].
  22. M. Asrat, A. Giveon, N. Itzhaki and D. Kutasov, “Holography Beyond AdS,” Nucl. Phys. B 932, 241-253 (2018) [arXiv:1711.02690 [hep-th]].
  23. S. Chakraborty, A. Giveon and D. Kutasov, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG, T⁢J¯𝑇¯𝐽T\bar{J}italic_T over¯ start_ARG italic_J end_ARG and String Theory,” J. Phys. A 52 (2019) no.38, 384003 [arXiv:1905.00051 [hep-th]].
  24. M. Guica, “A definition of primary operators in J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” SciPost Phys. 13, no.3, 045 (2022) [arXiv:2112.14736 [hep-th]].
  25. J. Kruthoff and O. Parrikar, “On the flow of states under T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” [arXiv:2006.03054 [hep-th]].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.