Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bitcoin Double-Spending Attack Detection using Graph Neural Network (2304.13935v1)

Published 27 Apr 2023 in cs.CR

Abstract: Bitcoin transactions include unspent transaction outputs (UTXOs) as their inputs and generate one or more newly owned UTXOs at specified addresses. Each UTXO can only be used as an input in a transaction once, and using it in two or more different transactions is referred to as a double-spending attack. Ultimately, due to the characteristics of the Bitcoin protocol, double-spending is impossible. However, problems may arise when a transaction is considered final even though its finality has not been fully guaranteed in order to achieve fast payment. In this paper, we propose an approach to detecting Bitcoin double-spending attacks using a graph neural network (GNN). This model predicts whether all nodes in the network contain a given payment transaction in their own memory pool (mempool) using information only obtained from some observer nodes in the network. Our experiment shows that the proposed model can detect double-spending with an accuracy of at least 0.95 when more than about 1% of the entire nodes in the network are observer nodes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.