Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Multi-Modal DBMSs for Seamless Querying of Texts and Tables (2304.13559v2)

Published 26 Apr 2023 in cs.DB and cs.CL

Abstract: In this paper, we propose Multi-Modal Databases (MMDBs), which is a new class of database systems that can seamlessly query text and tables using SQL. To enable seamless querying of textual data using SQL in an MMDB, we propose to extend relational databases with so-called multi-modal operators (MMOps) which are based on the advances of recent LLMs such as GPT-3. The main idea of MMOps is that they allow text collections to be treated as tables without the need to manually transform the data. As we show in our evaluation, our MMDB prototype can not only outperform state-of-the-art approaches such as text-to-table in terms of accuracy and performance but it also requires significantly less training data to fine-tune the model for an unseen text collection.

Citations (5)

Summary

We haven't generated a summary for this paper yet.