Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VeML: An End-to-End Machine Learning Lifecycle for Large-scale and High-dimensional Data (2304.13037v2)

Published 25 Apr 2023 in cs.LG, cs.DB, and cs.HC

Abstract: An end-to-end ML lifecycle consists of many iterative processes, from data preparation and ML model design to model training and then deploying the trained model for inference. When building an end-to-end lifecycle for an ML problem, many ML pipelines must be designed and executed that produce a huge number of lifecycle versions. Therefore, this paper introduces VeML, a Version management system dedicated to end-to-end ML Lifecycle. Our system tackles several crucial problems that other systems have not solved. First, we address the high cost of building an ML lifecycle, especially for large-scale and high-dimensional dataset. We solve this problem by proposing to transfer the lifecycle of similar datasets managed in our system to the new training data. We design an algorithm based on the core set to compute similarity for large-scale, high-dimensional data efficiently. Another critical issue is the model accuracy degradation by the difference between training data and testing data during the ML lifetime, which leads to lifecycle rebuild. Our system helps to detect this mismatch without getting labeled data from testing data and rebuild the ML lifecycle for a new data version. To demonstrate our contributions, we conduct experiments on real-world, large-scale datasets of driving images and spatiotemporal sensor data and show promising results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Van-Duc Le (9 papers)
  2. Cuong-Tien Bui (1 paper)
  3. Wen-Syan Li (5 papers)

Summary

We haven't generated a summary for this paper yet.