Spatiotemporal gender differences in urban vibrancy (2304.12840v2)
Abstract: Urban vibrancy is the dynamic activity of humans in urban locations. It can vary with urban features and the opportunities for human interactions, but it might also differ according to the underlying social conditions of city inhabitants across and within social surroundings. Such heterogeneity in how different demographic groups may experience cities has the potential to cause gender segregation because of differences in the preferences of inhabitants, their accessibility and opportunities, and large-scale mobility behaviours. However, traditional studies have failed to capture fully a high-frequency understanding of how urban vibrancy is linked to urban features, how this might differ for different genders, and how this might affect segregation in cities. Our results show that (1) there are differences between males and females in terms of urban vibrancy, (2) the differences relate to Points of Interest
as well as transportation networks, and (3) that there are both positive and negative spatial spillovers
existing across each city. To do this, we use a quantitative approach using Call Detail Record data--taking advantage of the near-ubiquitous use of mobile phones--to gain high-frequency observations of spatial behaviours across the seven most prominent cities of Italy. We use a spatial model comparison approach of the direct and spillover
effects from urban features on male-female differences. Our results increase our understanding of inequality in cities and how we can make future cities fairer.
- UN DESA. World Urbanization Prospects: The 2018 Revision. United Nations, August 2019. ISBN 978-92-1-004314-4. doi:10.18356/b9e995fe-en.
- Nigel Harris. Urbanisation, economic development and policy in developing countries. Habitat International, 14(4):3–42, January 1990. ISSN 0197-3975. doi:10.1016/0197-3975(90)90002-I.
- Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences, 104(17):7301–7306, April 2007. ISSN 0027-8424, 1091-6490. doi:10.1073/pnas.0610172104.
- The geography of human activity and land use: A big data approach. Cities, 97:102523, February 2020. ISSN 0264-2751. doi:10.1016/j.cities.2019.102523.
- S. Thomas. Urbanisation as a driver of change. In SUSTAINABLE CITY 2008, pages 95–104, Skiathos, Greece, August 2008. doi:10.2495/SC080101.
- The link between growth management and housing affordability: The academic evidence. Technical report, The Brookings institution center on urban and metropolitan policy, February 2002.
- M El Araby. Urban growth and environmental degradation. Cities, 19(6):389–400, December 2002. ISSN 02642751. doi:10.1016/S0264-2751(02)00069-0.
- Why is There More Crime in Cities? Journal of Political Economy, 107(S6):S225–S258, 1999. ISSN 0022-3808. doi:10.1086/250109.
- Extended urbanisation and the spatialities of infectious disease: Demographic change, infrastructure and governance. Urban Studies, 58(2):245–263, February 2021. ISSN 0042-0980, 1360-063X. doi:10.1177/0042098020910873.
- COVID-19 is linked to changes in the time–space dimension of human mobility. Nature Human Behaviour, jul 2023. ISSN 2397-3374. doi:10.1038/s41562-023-01660-3.
- Urban Computing: Concepts, Methodologies, and Applications. ACM Transactions on Intelligent Systems and Technology, 5(3):1–55, October 2014. ISSN 2157-6904, 2157-6912. doi:10.1145/2629592.
- Hierarchical organization of urban mobility and its connection with city livability. Nature Communications, 10(1):4817, October 2019. ISSN 2041-1723. doi:10.1038/s41467-019-12809-y.
- Big data fusion to estimate urban fuel consumption: A case study of riyadh. Transportation Research Record, 2672(24):49–59, dec 2018. ISSN 21694052. doi:10.1177/0361198118798461.
- Understanding vehicular routing behavior with location-based service data. EPJ Data Science, 10(1):12, dec 2021. ISSN 2193-1127. doi:10.1140/epjds/s13688-021-00267-w.
- Inequality is rising where social network segregation interacts with urban topology. Nature Communications, 12(1):1143, February 2021. ISSN 2041-1723. doi:10.1038/s41467-021-21465-0.
- Population health in an era of rising income inequality: USA, 1980–2015. The Lancet, 389(10077):1475–1490, April 2017. ISSN 01406736. doi:10.1016/S0140-6736(17)30571-8.
- Sally Weller and Andrew van Hulten. Gentrification and Displacement: The Effects of a Housing Crisis on Melbourne’s Low-Income Residents. Urban Policy and Research, 30(1):25–42, March 2012. ISSN 0811-1146. doi:10.1080/08111146.2011.635410.
- Barbara Entwisle. Putting people into place. Demography, 44(4):687–703, November 2007. ISSN 0070-3370. doi:10.1353/dem.2007.0045.
- Katherine King. Jane Jacobs and ‘The Need for Aged Buildings’: Neighbourhood Historical Development Pace and Community Social Relations. Urban Studies, 50(12):2407–2424, September 2013. ISSN 0042-0980. doi:10.1177/0042098013477698.
- Data from mobile phone operators: A tool for smarter cities? Telecommunications Policy, 39(3):335–346, May 2015. ISSN 0308-5961. doi:10.1016/j.telpol.2014.04.001.
- Understanding individual human mobility patterns. Nature, 453(7196):779–782, June 2008. ISSN 1476-4687. doi:10.1038/nature06958.
- Life in the network: The coming age of computational social science. Science (New York, N.Y.), 323(5915):721–723, February 2009. ISSN 0036-8075. doi:10.1126/science.1167742.
- Alessandro Vespignani. Predicting the Behavior of Techno-Social Systems. Science, 325(5939):425–428, July 2009. doi:10.1126/science.1171990.
- The Collaborative Image of The City: Mapping the Inequality of Urban Perception. PLOS ONE, 8(7):e68400, July 2013. ISSN 1932-6203. doi:10.1371/journal.pone.0068400.
- Quantifying crowd size with mobile phone and Twitter data. Royal Society Open Science, 2(5):150162, May 2015. ISSN 2054-5703. doi:10.1098/rsos.150162.
- Quantifying the link between art and property prices in urban neighbourhoods. Royal Society Open Science, 3(4):160146, April 2016. doi:10.1098/rsos.160146.
- Sensing global tourism numbers with millions of publicly shared online photographs. Environment and Planning A: Economy and Space, 52(3):471–477, May 2020. ISSN 0308-518X. doi:10.1177/0308518X19872772.
- Sequences of purchases in credit card data reveal lifestyles in urban populations. Nature Communications, 9(1):3330, August 2018. ISSN 2041-1723. doi:10.1038/s41467-018-05690-8.
- Rapid indicators of deprivation using grocery shopping data. Royal Society Open Science, 8(12):211069, December 2021. doi:10.1098/rsos.211069.
- Mining urban lifestyles: Urban computing, human behavior and recommender systems. In Big Data Recommender Systems: Application Paradigms, pages 71–81. Institution of Engineering and Technology, jul 2019. ISBN 9781785619779. doi:10.1049/PBPC035G_ch5.
- Rhythm of the streets: A street classification framework based on street activity patterns. EPJ Data Science, 11(1):43, December 2022. ISSN 2193-1127. doi:10.1140/epjds/s13688-022-00355-5.
- Michael Batty. The New Science of Cities. The MIT Press, 2013. ISBN 978-0-262-01952-1.
- Urban characteristics attributable to density-driven tie formation. Nature Communications, 4(1):1961, June 2013. ISSN 2041-1723. doi:10.1038/ncomms2961.
- Marc Barthelemy. The Structure and Dynamics of Cities: Urban Data Analysis and Theoretical Modeling. Cambridge University Press, November 2016. ISBN 978-1-107-10917-9. doi:10.1017/9781316271377.
- In search of art: Rapid estimates of gallery and museum visits using Google Trends. EPJ Data Science, 9(1):1–12, December 2020. ISSN 2193-1127. doi:10.1140/epjds/s13688-020-00232-z.
- Using mobility data as proxy for measuring urban vitality. Journal of Spatial Information Science, (16):137–162, June 2018. ISSN 1948-660X.
- Modelling urban vibrancy with mobile phone and OpenStreetMap data. PLoS ONE, 16(6 June):1–19, 2021. ISSN 19326203. doi:10.1371/journal.pone.0252015.
- Measuring Urban Vibrancy of Residential Communities Using Big Crowdsourced Geotagged Data. Frontiers in Big Data, 4, 2021. ISSN 2624-909X.
- Jane Jacobs. The Death and Life of Great American Cities. Random House;, 1961.
- Stefano Moroni. Urban density after Jane Jacobs: The crucial role of diversity and emergence. City, Territory and Architecture, 3(1):13, September 2016. ISSN 2195-2701. doi:10.1186/s40410-016-0041-1.
- Camilla Perrone. ‘Downtown Is for People’: The street-level approach in Jane Jacobs’ legacy and its resonance in the planning debate within the complexity theory of cities. Cities, 91:10–16, August 2019. ISSN 0264-2751. doi:10.1016/j.cities.2018.12.023.
- Big Data and the Well-Being of Women and Girls Applications on the Social Scientific Frontier. Data2x, 2017.
- OSM. OpenStreetMap contributors. https://www.openstreetmap.org/, 2017.
- ISTAT. Borders of administrative units for statistical purposes as of 1 January 2023. https://www.istat.it/it/archivio/222527, February 2023.
- GruppoTIM. Dataset Source: TIM Big Data Challenge, https://www.gruppotim.it/en.html. http://localhost:4000/cases/telecom-italias-big-data-challenge.html, 2015.
- Learning urban community structures: A collective embedding perspective with periodic spatial-temporal mobility graphs. ACM Transactions on Intelligent Systems and Technology, 9(6):63:1–63:28, 2018. ISSN 2157-6904. doi:10.1145/3209686. URL https://dl.acm.org/doi/10.1145/3209686.
- Evidence of Jacobs’s street life in the great Seoul city: Identifying the association of physical environment with walking activity on streets. Cities, 35:164–173, December 2013. ISSN 0264-2751. doi:10.1016/j.cities.2013.07.010.
- Intergenerational differences in the urban vibrancy of TOD: Impacts of the built environment on the activities of different age groups. Frontiers in Public Health, 10, 2022. ISSN 2296-2565.
- Investigating the spatiotemporal pattern between the built environment and urban vibrancy using big data in Shenzhen, China. Computers, Environment and Urban Systems, 95:101827, July 2022. ISSN 0198-9715. doi:10.1016/j.compenvurbsys.2022.101827.
- C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):379–423, July 1948. ISSN 0005-8580. doi:10.1002/j.1538-7305.1948.tb01338.x.
- Mobility patterns are associated with experienced income segregation in large US cities. Nature Communications, 12(1):4633, July 2021. ISSN 2041-1723. doi:10.1038/s41467-021-24899-8.
- Diversity beyond density: Experienced social mixing of urban streets, September 2022.
- The third place. Qualitative Sociology, 5(4):265–284, December 1982. ISSN 1573-7837. doi:10.1007/BF00986754.
- The Impact of Third Places on Community Quality of Life. Applied Research in Quality of Life, 4(4):333–345, December 2009. ISSN 1871-2584, 1871-2576. doi:10.1007/s11482-009-9084-8.
- Spatial interpolation using areal features: A review of methods and opportunities using new forms of data with coded illustrations. Geography Compass, 13(10):e12465, 2019. ISSN 1749-8198. doi:10.1111/gec3.12465.
- A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data, 9(1):39, February 2022. ISSN 2052-4463. doi:10.1038/s41597-021-01113-4.
- K. H. Hamed. The distribution of Kendall’s tau for testing the significance of cross-correlation in persistent data. Hydrological Sciences Journal, 56(5):841–853, July 2011. ISSN 0262-6667, 2150-3435. doi:10.1080/02626667.2011.586948.
- Spatial Regression Models. Quantitative Applications in the Social Sciences. SAGE Publications, Thousand Oaks, California, second edition edition, 2019. ISBN 978-1-5443-2883-6.
- GeoDa : An Introduction to Spatial Data Analysis. Geographical Analysis, 38(1):5–22, 2006. ISSN 1538-4632. doi:10.1111/j.0016-7363.2005.00671.x.
- PySAL: A Python Library of Spatial Analytical Methods. In Manfred M. Fischer and Arthur Getis, editors, Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications, pages 175–193. Springer, Berlin, Heidelberg, 2010. ISBN 978-3-642-03647-7. doi:10.1007/978-3-642-03647-7_11.
- Spatial Growth Regressions: Model Specification, Estimation and Interpretation. Spatial Economic Analysis, 3(3):275–304, November 2008. ISSN 1742-1772. doi:10.1080/17421770802353758.
- Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. GeoDa Press LLC, Chicago, IL, 2014. ISBN 978-0-9863421-0-3.
- An analysis of the “direct effect” and “indirect effect” of urban housing prices on the upgrading of industrial structure——Based on data of 285 cities. Journal of Physics: Conference Series, 1792(1):012017, February 2021. ISSN 1742-6588, 1742-6596. doi:10.1088/1742-6596/1792/1/012017.
- Comparing Implementations of Estimation Methods for Spatial Econometrics. Journal of statistical software, 63:1–36, February 2015. doi:10.18637/jss.v063.i18.
- M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1):81–93, 1938. ISSN 0006-3444. doi:10.2307/2332226. URL https://www.jstor.org/stable/2332226. Publisher: [Oxford University Press, Biometrika Trust].
- Introduction to Spatial Econometrics. Chapman and Hall/CRC, New York, January 2009. ISBN 978-0-429-13808-9. doi:10.1201/9781420064254.
- Luc Anselin. Spatial Econometrics: Methods and Models, volume 4 of Studies in Operational Regional Science. Springer Netherlands, Dordrecht, 1988. ISBN 978-90-481-8311-1 978-94-015-7799-1. doi:10.1007/978-94-015-7799-1.
- Heterogeneity in states and urban structure. Regional Science and Urban Economics, 18(1):37–56, February 1988. ISSN 01660462. doi:10.1016/0166-0462(88)90004-X.
- Measuring the vibrancy of urban neighborhoods using mobile phone data with an improved PageRank algorithm. Transactions in GIS, 23(2):241–258, 2019. ISSN 1467-9671. doi:10.1111/tgis.12515.