Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Object Semantics Give Us the Depth We Need: Multi-task Approach to Aerial Depth Completion (2304.12542v1)

Published 25 Apr 2023 in cs.CV, cs.AI, and cs.RO

Abstract: Depth completion and object detection are two crucial tasks often used for aerial 3D mapping, path planning, and collision avoidance of Uncrewed Aerial Vehicles (UAVs). Common solutions include using measurements from a LiDAR sensor; however, the generated point cloud is often sparse and irregular and limits the system's capabilities in 3D rendering and safety-critical decision-making. To mitigate this challenge, information from other sensors on the UAV (viz., a camera used for object detection) is utilized to help the depth completion process generate denser 3D models. Performing both aerial depth completion and object detection tasks while fusing the data from the two sensors poses a challenge to resource efficiency. We address this challenge by proposing a novel approach to jointly execute the two tasks in a single pass. The proposed method is based on an encoder-focused multi-task learning model that exposes the two tasks to jointly learned features. We demonstrate how semantic expectations of the objects in the scene learned by the object detection pathway can boost the performance of the depth completion pathway while placing the missing depth values. Experimental results show that the proposed multi-task network outperforms its single-task counterpart, particularly when exposed to defective inputs.

Summary

We haven't generated a summary for this paper yet.