Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UTSGAN: Unseen Transition Suss GAN for Transition-Aware Image-to-image Translation (2304.11955v1)

Published 24 Apr 2023 in cs.CV and cs.LG

Abstract: In the field of Image-to-Image (I2I) translation, ensuring consistency between input images and their translated results is a key requirement for producing high-quality and desirable outputs. Previous I2I methods have relied on result consistency, which enforces consistency between the translated results and the ground truth output, to achieve this goal. However, result consistency is limited in its ability to handle complex and unseen attribute changes in translation tasks. To address this issue, we introduce a transition-aware approach to I2I translation, where the data translation mapping is explicitly parameterized with a transition variable, allowing for the modelling of unobserved translations triggered by unseen transitions. Furthermore, we propose the use of transition consistency, defined on the transition variable, to enable regularization of consistency on unobserved translations, which is omitted in previous works. Based on these insights, we present Unseen Transition Suss GAN (UTSGAN), a generative framework that constructs a manifold for the transition with a stochastic transition encoder and coherently regularizes and generalizes result consistency and transition consistency on both training and unobserved translations with tailor-designed constraints. Extensive experiments on four different I2I tasks performed on five different datasets demonstrate the efficacy of our proposed UTSGAN in performing consistent translations.

Summary

We haven't generated a summary for this paper yet.