Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning framework for end-to-end implementation of Incident duration prediction (2304.11507v1)

Published 23 Apr 2023 in cs.LG and cs.AI

Abstract: Traffic congestion caused by non-recurring incidents such as vehicle crashes and debris is a key issue for Traffic Management Centers (TMCs). Clearing incidents in a timely manner is essential for improving safety and reducing delays and emissions for the traveling public. However, TMCs and other responders face a challenge in predicting the duration of incidents (until the roadway is clear), making decisions of what resources to deploy difficult. To address this problem, this research developed an analytical framework and end-to-end machine-learning solution for predicting incident duration based on information available as soon as an incident report is received. Quality predictions of incident duration can help TMCs and other responders take a proactive approach in deploying responder services such as tow trucks, maintenance crews or activating alternative routes. The predictions use a combination of classification and regression machine learning modules. The performance of the developed solution has been evaluated based on the Mean Absolute Error (MAE), or deviation from the actual incident duration as well as Area Under the Curve (AUC) and Mean Absolute Percentage Error (MAPE). The results showed that the framework significantly improved incident duration prediction compared to methods from previous research.

Summary

We haven't generated a summary for this paper yet.